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ABSTRACT
In recent years, image-guided thermal ablations have be-

come a considerable treatment method for cancer patients,
including support through navigational systems. One of the
most critical challenges in these systems is the registration
between the intraoperative images and the preoperative vol-
ume. The motion secondary to inspiration makes registration
even more difficult. In this work, we propose a coarse-fine
fast patient registration technique to solve the problem of mo-
tion compensation. In contrast to other state-of-the-art meth-
ods, we focus on improving the convergence range of regis-
tration. To this end, we make use of a Deep Learning 2D U-
Net framework to extract the vessels and liver borders from
intraoperative ultrasound images and employ the segmenta-
tion results as regions of interest in the registration. After an
initial 3D-3D registration during breath hold, the following
motion compensation is achieved using a 2D-3D registration.
Our approach yields a convergence rate of over 70% with an
accuracy of 1.97 ± 1.07 mm regarding the target registration
error. The 2D-3D registration is GPU-accelerated with a time
cost of less than 200 ms.

Index Terms— U-Net, CMA-ES, CUDA, Registration

1. INTRODUCTION

Liver tumor ablation techniques such as microwave or ra-
diofrequency ablation have become relevant treatment op-
tions to handle metastases in recent years [1, 2]. A number
of intraoperative imaging modalities like ultrasound (US)
or computed tomography (CT) can be used to guide the per-
forming radiologist during needle insertion. Compared to CT,
US devices have the advantage of real-time image acquisition
which is necessary to handle the motion of the internal organs
without breath control devices. Therefore, radiologists may
prefer using US in liver ablation procedures. Unfortunately,
due to its low image quality US images rarely show tissue
details, especially small tumors or other small risk structures.
To overcome the lack of visibility, interventional navigation
systems have been developed in recent years to guide the
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radiologist during needle insertion [3, 4]. Regarding naviga-
tion accuracy, the most critical part is the registration of the
preoperative volume to the intraoperative data.
One type of method covers the static 3D-3D registration.
These approaches usually yield a higher global accuracy dur-
ing breath holding intervals but often lack the ability for small
local adjustments within a Region-Of-Interest (ROI) around
the target structure. Penny et al.[5] have introduced a navi-
gation system where registration relies on manual annotation
and a simple Iterative-Closest-Points algorithm. In [6], a 3D
US volume is reconstructed from 2D laparoscopic US images
and aligned with a CT volume using a stochastic optimizer.
Lange et al. [7] propose a method of combining anatomical
landmark information with TPS non-rigid wrapping method
which yields a promising registration result. Haque et al.[8]
have proposed a coarse-to-fine registration method which
achieves high accuracy on both MR and CT data with a tol-
erable computation time of 40s. These approaches require
breath holding during the scan. Once the breath holding
machine is turned off, the registration is disturbed by breath
motion up to several centimeters. Banerjee [9] takes the
advantage of the 3D ultrasound device and introduces a reg-
istration with block-matching technique. His method yields a
high registration accuracy 1.8 mm with low time cost of 125
ms.
Another approach is the registration of 2D US images to a
3D volume without reconstruction. These approaches usually
do not provide a high global accuracy but focus on mini-
mization of the target registration error (TRE) in a specific
ROI. Wein et al. [10] apply a method to generate synthetic
US images out of a resliced CT volume. Afterwards, the
synthetic US image is aligned with the real US image using
the correlation coefficient as similarity measurement. Xu et
al. [11] extend mutual information similarity with additional
spatial mutual information and show a promising registra-
tion result. Weon et al. [12] propose a real-time registration
method between 4D preoperative image and intraoperative
2D ultrasound image. They take the advantages of acquired
4D preoperative images to demonstrate breath motion and
a fixed 3D US probe which can capture 3D US volume for
the rough pose estimation and 2D US image for the motion
compensation. Although the registration method outperforms



other state-of-the-art methods, their clinic setups are signifi-
cantly different to the common clinical workflow of the liver
tumor ablation procedure. In this work, we propose a fast reg-
istration pipeline to compensate translational liver movement
caused by patient breathing. In contrast to the other state-
of-the-art methods, our goal was to speed up and improve
the convergence range of image registration, which enables a
fully automatic registration without any manual initial pose
placement and handles large motion secondary to deep in-
spiration. The main contribution to achieve this is two stage
coarse-fine approach combining 3D-3D registration to find
the initial alignment and a fast 2D-3D registration to optimize
the accuracy while ensuring a rather wide convergence range.

Authors Type Accuracy [mm] Time [s]
Penny et al. [5] 3D-3D 10 ± ? 300
Fusaglia et al. [6] 3D-3D 5 ± ? 720
Banerjee et al. [9] 3D-3D 1.8 ± ? 0.125
Haque et al. [8] 3D-3D 3.22 ± 1.91 40
Wein et al. [10] 2D-3D 8.1 ± ? 40
Xu et al. [11] 2D-3D 4.13 ± 1.27 76
Weon et al. [12] 2D-4D 2.42 ± 0.87 0.06
Our method 2D-3D 1.97 ± 1.07 0.16

Table 1. Overview of the related work regarding the patient
registration compared to our approach.

2. MATERIALS AND METHODS

2.1. System Setup

In this setup, we used a Northern Digital Inc. Polaris Vicra
camera to track passive optical tracking markers, which are
mounted onto the US probe. As long as the line of sight is
not interrupted, this device allows an accurate tracking of the
probe providing the transformation CamTUS P . The relation
between the probe and the US image US PTUS I is given by
calibrating the probe once in advance using a specially de-
signed calibrator. The US image coordinate system is defined
in 3D space, which has the same origin and aligned axes as
the 2D US image coordinate system. The missing transfor-
mation from the preoperative CT volume to the intraoperative
US image CTTUS I is initially computed using the coarse reg-
istration approach described in the Section 2.2 and then im-
proved by 2D-3D fine registration discussed in the following
Sections 2.2 and 2.3. The final visualization of the navigation
system is based on the preoperative CT volume data. There-
fore, the final transformation from the NDI tracking camera
to the preoperative volume CamTCT is given by Equation 1.

CamTCT =Cam TUS P ∗US P TUS I ∗ (CTTUS I)
−1 (1)

2.2. Preprocessing

As depicted in Figure 2, US images mainly reveal the
anatomy of vessels and the boundary of the liver surface. On
the other hand, a CT volume provides a wide capture range

and shows more organs and details of tissues. To handle
image variability between CT and US images, our registra-
tion method is focused on both, the vessel structures and the
boundary of the liver. Thus a 2D U-Net supporting multiple
classes was implemented to extract the necessary information
from the US images as a variation of the original U-Net in-
troduced in [13]. In this network, stochastic gradient descent
was used as the optimizer with a momentum of 0.85 with a
learning rate of 0.05. Dropout layers were used in order to
improve the generalization capability of the network with a
drop-rate of 0.5. The network has been extended with multi-
ple classes including background, liver boundary and vessel.
A cost function was defined as a weighted summary of Dice
similarity coefficient of the three components using the co-
efficient 0.001, 0.5 and 1.0 for background, liver boundary
and vessel, respectively. The network is trained with 262 US
images (with ground truth segmentation) from seven different
patients. Eighty percent of the images were used for training
and 20 percent for validation. To avoid the correlation of
training and test datasets, the leave-one-patient-out strategy is
applied with seven folds. The prediction results show a good
segmentation with mean Dice scores of 0.5 for vessel struc-
tures and mean Dice scores of 0.6 for liver boundary. This
segmentation provides an adequate quality of mask which is
used in image registration. The result of prediction is used
to define a mask (Figure 2) for the similarity measurement
where Φv and Φb correspond to the vessel and liver boundary
respectively.
During the perioperative phase, tracked US images are ac-
quired by swiping the patients while breath holding. The
acquired images are processed in real-time using the trained
2D U-Net. Afterwards the segmented 2D vessel structures are
reconstructed into 3D space. A rigid registration is performed
to align the preoperative CT volume and the reconstructed
vessel structures using a cost function calculating the overlap
of the vessel structures and an optimizer: evolutionary strat-
egy of a co-variance matrix adaptation (CMA-ES) [14] which
can maximize the overlap.

2.3. 2D-3D image registration

Due to the variability of liver tissue between US images and
CT images the detected masks are applied on US images to
minimize the possible ambiguities and to reduce the compu-
tational effort. Furthermore, gray values of US images are in-
verted to reduce the variability of vessel appearance between
the US and enhanced CT image. In addition, we make use
of the gradient orientation (GO) to measure the similarity of
vessel structures.

GO =

 1
N

m∑
i=1

2−ln(|arccos(cos(θi))|+1)
2 , Φb ∩Ψb > 0

2−ln(π+1)
2 , Φb ∩Ψb = 0

cos(θi) =
∇ICT r(i) ∗ ∇IUS(i)

‖∇ICT r(i)‖ ∗ ‖∇IUS(i)‖
(2)



Fig. 1. The diagram of the 2D U-Net which was trained to extract information about the vessel and liver boundary masks.

Fig. 2. Example segmentation result for a single slice US
image using the trained 2D U-Net. Φv (red) shows the vessel
segmentation, and Φb (yellow) shows the mask of the liver
surface.

The GO compares gradient vectors on vessel borders from
both US and resliced images. The intraoperative detected ves-
sel mask and the resliced vessel mask derived from preopera-
tive vessel segmentation are applied to filter out gradient vec-
tors out of vessel regions. To increase the robustness, we only
observe gradient vectors on the vessel outline, which show a
gradient magnitude greater than the median of the sorted over-
all vectors. Equation 2 shows the similarity measurement of
the inverted US image IUS and the resliced CT image ICT r,
where ∇ICT r(i) and ∇IUS(i) denote the gradient fields of
resliced CT image and US image respectively.

Here, Φb and Ψb stand for liver boundary mask in US im-
age and resliced CT image, respectively. To keep both masks
being overlapped, a constraint Φb ∩Ψb > 0 is defined, which
can limit the search range and hence improve the convergence
rate. The similarity of the resliced CT image and the US im-
age is optimized using CMA-ES (see Equation 3). Based on
the previous study [15] which shows that the hepatic motion
secondary to respiration causes mainly liver movement along
the patient Cranio-Caudal axis, the optimization parameter
CTTUS is limited to the translations along X, Y and Z axes

of the volume coordinate system.

arg min
CTTUS

(−GO(IUS , ICT r(
CTTUS))) (3)

3. EVALUATION

To evaluate the performance of our liver registration method,
12 patients were involved in the study. To avoid the corre-
lation between training and test dataset the evaluation has
been made with leave-one-patient-out strategy. The pre-
operative CT images were captured with GE LightSpeed
VCT (image dimension 512x512x400 voxels and voxel size
0.68x0.68x1.25 mm) after contrast enhancement. Intraop-
erative images were acquired using the low-end Telemed
Ultrasound System with 3.5MHz abdominal probe and har-
monic scan protocol. The ultrasound probe was modified with
tracking markers and calibrated with a calibration phantom.
In total, 99 US images were selected for the evaluation, which
provides a segmented vessel-to-image area ratio greater than
1%. For each US image, the corresponding ground truth of
the registration was established manually by one field expert
and later verified by one clinician with more than ten years
of experience. To evaluate the quality of GO similarity mea-

Fig. 3. Example search space. The plotted lines correspond
to the translation search space in X (blue), Y (orange), and Z
(brown) direction taken from one US image.
surement, the search space is sampled in three dimensions



and plotted around their ground truth. As shown in Figure
3, the search space is sampled with a wide scope: transla-
tional shift up to ± 50 mm. Despite several local minima, a
global minimum on the ground truth always exists. A robust
optimizer like CMA-ES is chosen to lead optimization to the
global minimum. Considering the run-time performance of
registration, the optimizer is set with a population of 100 and
maximal iteration of 100. To evaluate the robustness and ac-
curacy of the proposed method, the registration was repeated
with initial poses shifted away from their ground truth in X,
Y and Z axes. A threshold of 5 mm is applied to differentiate
successful and failed registration. This threshold is chosen
according to the common minimum ablation safety margin
[16]. As shown in Figure 4, the registration has a high conver-
gence rate beyond 80% within slight patient motions up to 30
mm. The robustness is decreased to 70% under a large ampli-
tude patient motion of 31 mm to 80 mm. Even though 20%
- 30% of the registration fails this rate is negligible because
this error is dissolved within the next frames. To evaluate

Fig. 4. Success rate of the registration. The initial pose shifted
from the ground truth shows an interval of ten sample steps.
Each interval was separated into X (blue), Y (orange) and Z
(brown) direction.

the accuracy of 2D-3D registration, a target region is defined
by clinic experts for each patient data. After registration,
the point cloud in the target region is transformed into the
US image coordinate system using ground truth matrix and
the registration matrix, respectively. The TRE is derived by
calculating the root-mean-square (RMS) residual distances of
those two transformed point clouds. An example of success-
ful registration is shown in Figure 5. The results show that
the registration has a high accuracy of 1.97 ± 1.06 mm, 1.97
± 1.07 mm and 1.97± 1.07 mm with initial translation along
X, Y and Z axes of CT volume coordinate system respec-
tively. The registration method is implemented with CUDA
and evaluated on a laptop with Intel Core i7 7700HQ, 16 GB
RAM and NVIDIA Geforce GTX 1050 (4 GB VRAM). The
registration time cost is 420 ms on average. We also tested
the computational effort with better hardware by upgrading
the graphics card to an NVIDIA Geforce GTX 1080 Ti (11
GB VRAM), which provides six times as many cores and a
higher clock rate. This results in an average computation time
of 160 ms, which matches the frame rate of the US device and

therefore can satisfy the requirement of speed for the needle
guidance.

Fig. 5. Example of registration results. left: 2D US image,
right: registered preoperative CT image.

4. CONCLUSION

In this work, we have presented an automatic fast registration
method for motion compensation in the procedure of liver tu-
mor ablation. In contrast to other state-of-the-art methods, we
focus on improving convergence range of registration. To this
end, a 2D U-Net is proposed which can provide mask of ves-
sel and liver boundary to stabilize similarity calculation and
enlarge the convergence range of registration. Evaluation has
been conducted with ultrasound images captured from 12 real
patients. To perform the accuracy test, 99 ultrasound images
were selected, where segmented vessel-to-image area ratio is
higher than 1%. The result shows that the method has ro-
bustness of >80% success rate in near range [1mm-30mm]
and >70% success rate in wide range [31mm-80mm] to the
ground truth. The overall accuracy of registration is 1.97 ±
1.07 mm. Furthermore, thanks to the hardware acceleration
the registration for each image can be finished in under 500
ms on a low-end device and in under 200 ms on a high-end
device. This preliminary result shows the possibility of fast
patient motion compensation during navigation of liver tumor
ablation. Despite showing the promising registration results,
the performance of our method still depends on visibility and
mass of vessel structures in US images. The method fails
when too few vessel structures are available in captured US
images. Recent research works show the power of using gen-
erative adversarial networks (GAN)[17, 18] to address regis-
tration task, where the similarity measurement can be derived
from the discrimination network, and the registration might
be improved by using GAN in future work.
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