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Abstract

Background and Objective: We propose an automatic approach for fast vertebral body segmentation in

three-dimensional magnetic resonance images of the whole spine. Previous works are limited to the lower

thoracolumbar section and often take minutes to compute, which is problematic in clinical routine, for study

data sets with numerous subjects or when the cervical or upper thoracic spine is to be analyzed.

Methods: We address these limitations by a novel graph cut formulation based on vertebra patches

extracted along the spine. For each patch, our formulation incorporates appearance and shape information

derived from a task-specific convolutional neural network as well as star-convexity constraints that ensure

a topologically correct segmentation of each vertebra. When segmenting vertebrae individually, ambiguities

will occur due to overlapping segmentations of adjacent vertebrae. We tackle this problem by novel non-

overlap constraints between neighboring patches based on so-called encoding swaps. The latter allow us to

obtain a globally optimal multi-label segmentation of all vertebrae in polynomial time.

Results: We validated our approach on two data sets. The first contains T1- and T2-weighted whole spine

images of 64 subjects with varying health conditions. The second comprises 23 T2-weighted thoracolumbar

images of young healthy adults and is publicly available. Our method yielded Dice coefficients of 93.8± 2.6 %

and 96.0± 1.0 % for both data sets with a run time of 1.35± 0.08 s and 0.90± 0.03 s per vertebra on consumer

hardware. A complete whole spine segmentation took 32.4± 1.92 s on average.

Conclusions: Our results are superior to those of previous works at a fraction of their run time, which

illustrates the efficiency and effectiveness of our whole spine segmentation approach.
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1. Introduction

Due to its soft-tissue contrast, magnetic reso-

nance imaging has become a valuable non-invasive
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tool for the analysis of the spine both in clinical rou-

tine and in study contexts. Potential investigations

include measurements of so-called Cobb angles for

the rating of kyphosis/scoliosis, assessments related

to vertebra morphometry and the identification of

compression fractures such as crushed/wedged ver-

tebrae. The rising clinical interest in magnetic

resonance-based analysis has led to a number of

works on automatic and semi-automatic segmen-

tation of vertebral bodies (simply called vertebrae

hereafter), both model- and data-driven. We will

now go into some detail on relevant related works.

For an in-depth discussion we refer to the compre-

hensive surveys of [1] and [2].

A first model-driven approach was presented in

[3], who use a superquadrics-based parameteric

shape model that adapts to a nearby vertebra based

on the intensity information in a local neighbor-

hood of the model. Alternatively, [4] employ bal-

loon forces to inflate a surface mesh with smooth-

ness constraints directly inside the vertebra. Both

approaches may lead to ambiguities between adja-

cent vertebrae. To cope with this issue, [5] arranged

multiple adjacent vertebrae into a single elastic fi-

nite element model, which adapts to the data via

forces derived from the nearby image content.

Statistical shape modeling with standard active

shape models was used in [6] and later by [7] to fit

each vertebra individually. The concept was gen-

eralized to part-based models by [8] and [9], who

include shape and pose relations between multiple

vertebrae to avoid any ambiguities. Both also used

non-linear mappings to improve their shape space

representation compared to standard active shape

modeling. Rather recently, [10] showed encouraging

results by linking single vertebra active shape mod-

els with vertebra likelihood maps generated from a

convolutional neural networks.

Data-driven techniques are most often patch-

based, meaning that the segmentation is performed

in a small neighborhood around each vertebra. To

this end, [11] match a cubically-shaped template

deformably to a nearby vertebra via a graph cut

optimization framework. A similary strategy was

used in [12], where interactive graph cuts were used

to carve out the central vertebrae of user-supplied

patches. In [13] geodesic active contours and the

Chan-Vese intensity model are combined into a level

set-based segmentation technique. The same ap-

proach was later reused and sped-up in [14].

A data-drive machine learning-based approach

is presented in [15]. They combined appearance

learned via random forests with shape information

estimated via Parzen windows into a vertebra prob-

ability map, which is then thresholded. Another

learning-based strategy was proposed in [16], who

first decompose the image into super-voxels from

which appearance and shape features get extracted.

These features are used to train a random forest-

based super-voxel classifier. A similar strategy was

presented in [17], who utilized random forests on

different image resolutions to cope with differently-

sized vertebrae. [18] demonstrated that also U-Net-

like convoluational neural networks can be used for

vertebra segmentation with great success.

In purely two-dimensional mid-sagittal settings,

data-driven techniques are typically applied to

the whole image rather than individual vertebra

patches. For instance, [19] use decision trees to

combine appearance, shape and pose information
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Figure 1: Our patch-based framework for whole spine vertebra segmentation. Image patches (green squares) are extracted

for each vertebra (top left). Then, a vertebra likelihood map is computed via a task-specific convolutional neural network

on patch-level. Afterwards, patch-based segmentation is applied, whereby we use a graph cut formulation to combine the

likelihood maps Ei (·) of all vertebra patches i with non-overlap constraints Oi,j (·) between any two adjacent vertebra patches

i and j to prohibit ambiguities between neighboring vertebrae. This strategy is both effective and efficient, because we are

able to solve the multi-label segmentation problem via a binary graph cut formulation. Finally, the resulting segmentation is

re-embedded into the image domain (top right). The vertebra segmentation is color-coded to ease the differentiation between

neighboring vertebrae. Please note that there is considerable overlap between the neighboring image patches (left). Please also

note that for visualization purposes, we varied the patch size from head to foot (left), while for our implementation we actually

use fixed-size patches for the whole spine.

into a random field inference task, which is solved

approximately by Gibbs sampling. An augmented

Lagrangian method is present in [20]. Thereby

distributions of vertebrae appearance features are

matched to a known reference distribution to dif-

ferentiate between vertebra and non-vertebra tis-

sue. Normalized cuts were used in [21] to segment

multiple vertebrae at once. They also introduced a

spatial smoothness term to ensure the compactness

of each vertebra. In [22], vertebrae are segmented

via a pipeline composed of fuzzy C-means clustering

and morphological postprocessing.

To support a wide range of applications, vertebra

segmentation techniques should apply to different

imaging sequences and to the whole spine. They

should be reasonably fast, because time may be-

come a critical resource in clinical routine or for

study data sets with numerous subjects. These

challenges are often overlooked in previous works,

which are limited to the lower thoracolumbar sec-

tion of the spine, easily take minutes to compute

and typically apply to a single sequence only. To

the best of our knowledge, we are the first to ad-

dress all named challenges in a single segmentation

framework.

2. Method

We contribute a novel binary graph cut formula-

tion, which fuses patch-based star convex vertebra

segmentation with non-overlap constraints between

adjacent patches, ensuring topological correctness

for each and between adjacent vertebrae. Akin to

previous works, our formulation involves informa-

tion about vertebra appearance and shape. This
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work is based on our earlier work [23], where we

showed that engineered appearance and shape fea-

tures can compete with recent machine learning-

based methods if integrated into our graph cut

formulation. Within this work, we go beyond

that, showing that superior results can be obtained

when integrating appearance and shape informa-

tion by an end-to-end convolutional neural network

on patch level. Otherwise put, we replace the hand-

crafted appearance and shape features of our earlier

work [23] by an end-to-end trainable convolutional

neural network and demonstrate how this can be in-

tegrated effectively into our graph cut formulation

to yield a topologically correct segmentations.

Our novel combination of graph cuts and neural

networks ranges midway between the two straight-

forward solutions: (a) an end-to-end trainable net-

work that applies to the image as a whole and (b)

a sliding window network for voxel-wise prediction.

Solution (a) requires a large training data set to

capture the topological relations between multiple

adjacent vertebrae. Solution (b) requires rather lit-

tle training data, but would perform worse since

neither the appearance nor the shape of a single

vertebra is captured completely. In our method,

topological relations do not require any training,

because they are handled by the graph cut frame-

work explicitly. Therefore, our patch-based neural

network can focus on the appearance and shape of

individual vertebrae, which eases the training and

requires only a moderately sized training data set.

In the remainder of the section, we first outline nec-

essary preprocessing steps. Afterwards, we intro-

duce our novel graph cut formulation and go into

detail on the relations between global optimality

and topological guarantees. Finally, we show how

to set up and integrate a task-specific convolution

neural network into the overall problem formula-

tion.

2.1. Preprocessing

Vertebrae segmentation is typically applied only

after a vertebra localization, which is either based

on user-interaction [3, 8, 5, 9, 13, 10, 14] or on auto-

matic vertebra detectors [6, 4, 15]. Akin to previous

works, we interpret vertebrae localization as a pre-

processing step, for which many valuable techniques

exist. We use our fast whole spine detector [24] and

refer to the comprehensive surveys of [1] and [2] for

a discussion of other approaches. Our detector uti-

lizes the Kullback-Leibler divergence to model the

appearance of neighboring vertebrae, which makes

it suitable for localization in T1- and T2-weighted

images alike. Specifically, we exploit the fact that

vertebrae are homogeneous and neighboring verte-

brae look similar to each other. Appearance infor-

mation is complemented by information about the

spine geometry, i.e. geometrical relations between

neighboring vertebrae. This directly leads to an

inference task on a second-order graphical model,

which can be solved efficiently via belief propaga-

tion. Please see [24] for further details on vertebra

localization.

Based on the vertebra localization, we extract

cubically-shaped vertebra-centered patches for the

whole spine as outlined in Figure 1. Patch-based

strategies significantly reduce the problem size com-

pared to whole-image segmentation and ease mod-

eling by focusing on individual vertebrae. How-

ever, ambiguities can arise for close targets when
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patch-wise results are re-embedded into the image

domain, which is especially true if vertebrae are not

well-separated by intervertebral discs. In what fol-

lows, we first detail our patch-wise formulation and

show how to combine the patch-wise tasks into a

joint ambiguity-free formulation afterwards.

2.2. Patch-wise Formulation

For each extracted vertebra patch, we interpret

the segmentation of its central vertebra as an en-

ergy minimization problem. In particular, we seek

a binary labeling l ∈ {0, 1}|P| of the voxels p ∈ P

of the patch into foreground (lp = 1), i.e. voxels in-

side the central vertebra, and background (lp = 0),

i.e. voxels outside of it, that minimizes

E (l) =
∑
p∈P

Up (lp)︸ ︷︷ ︸
Appearance & Shape

+
∑

(p,q)∈C

Cpq (lp, lq)

︸ ︷︷ ︸
Star-Convexity

. (1)

Our model involves soft priors for vertebra appear-

ance and shape as well as hard constraints that en-

sure a star convex shaped segmentation of the ver-

tebra. The edge set C comprises the ordered voxel

pairs (p, q) that are linked by star-convexity con-

straints; this will be discussed later.

Please note that we will design each term such

that the resulting energy is graph-representable, in

which case the minimization of Equation 1 takes

only O (#voxels · #edges2) time, cf. [25]. For

the problem to be graph-representable, all pairwise

terms T (li, lj), i.e. the star-convexity constraints

in Equation 1, have to obey T (0, 0) + T (1, 1) ≤

T (0, 1) + T (1, 0) [26]. This essentially means that

the assignment of different labels should not be

cheaper than the assignment of similar ones. We

now discuss each term in greater detail.

2.2.1. Appearance and Shape

Recent works encode appearance information by

machine learning techniques like decision trees [19],

random forests [15, 16] and convolutional neural

networks [10]. We apply machine learning too.

However, we address both appearance and shape

at the same time, which greatly simplifies the mod-

eling compared to previous works. Specifically, we

learn only a single unary term to capture appear-

ance and shape information at the same time. Our

unary term reads

Up (lp) = [lp = 0] ·

 dp (∂Ω) d ∈ Ω

−dp (∂Ω) d 6∈ Ω︸ ︷︷ ︸
up

, (2)

whereby Iverson brackets [ · ] select only the back-

ground label, which implies zero costs for the fore-

ground. The background costs depend on the Eu-

clidean distance dp of the voxel d to the boundary

∂Ω of a preliminary segmented region Ω. Term up

is a so-called signed distance function, which gives

increasingly positive values towards the interior of

Ω and decreasingly negative values towards the bor-

der of the vertebra patch. The values of up can be

computed efficiently by solving the Eikonal equa-

tion with respect to Ω. To this end, we use the

fast marching algorithm [27], which takes quasilin-

ear time when implemented with a heap data struc-

ture.

Our combined appearance and shape prior is il-

lustrated in Figure 2. The term favors foreground
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up = 0up = 0

Figure 2: Our combined appearance and shape prior on coro-

nal (first and second image) and axial (third and fourth im-

age) slices of a particular vertebra patch (green squares).

Ideally, the unary costs up (second and fourth image) are

positive in the foreground, i.e. inside the central vertebra,

and negative for most of the background. If our combined

prior would be considered on its own, then the energy min-

imization would essentially be a voxel-wise thresholding at

the pivot point up = 0. Please note that we oversimplified

the thresholding (red curves) for illustration purposes.

when Equation 2 becomes positive and background

otherwise. The pivot point is at a distance of

dp = 0, which means that the preliminary seg-

mented region Ω should ideally reflect only the cen-

tral vertebra of the patch. However, this is hard to

guarantee, which will be shown in the experiments.

In this work, the presegmentation Ω is computed

by our convolutional neural network, which - for

the sake of argumentation - will be introduced in

the end of this section.

2.2.2. Star-Convexity

We employ the star-convexity constraints of [28]

to ensure a topologically correct segmentation of

the vertebra. In particular, we will restrict the seg-

mentation to a single connected component without

holes in the center of the patch. Thus leakage into

adjacent vertebrae and other neighboring structures

becomes less likely. To this end, we enforce that for

any foreground voxel r, every other voxel p on the

line segment between r and the center of the patch

c is foreground too. The idea is illustrated in Fig-

c cr2c

r3

r1

Figure 3: Star-convexity constraints on axial (left), coronal

(middle) and sagittal (right) slices. If voxels ri (dots) were

assigned to the foreground, then any other voxel on the line

segment (green) to the center voxel c (crosses) would be fore-

ground too. The resulting segmentation consists of a single

connected component without holes in the center of the ver-

tebra patch.

ure 3.

Star-convexity may be implemented by rasteriza-

tion. To this end, the line segment between the cen-

ter c of the patch and every voxel r is transformed

into a sequence of voxels (c, . . . , p, q, . . . r). Then

each pair of neighboring voxels of the sequence is

“tied” together by hard constraints. Given two such

voxels p and q the star-convexity constraints read

Cpq (lp, lq) = [lp = 0 ∧ lq = 1] · ∞, (3)

where Iverson brackets [ · ] assign infinite costs when

foreground shall be assigned after some background

voxel, cf. [28].2 The rasterization does not need

to be computed “online” during segmentation, be-

cause it is independent of the image content and of

the voxel size.

We precompute the rasterization and, thus, all

pairs (p, q) of voxels via Bresenham’s line algorithm

[29] on a sufficiently large reference patch. The

pairs are then loaded before the segmentation and

cropped to the particular image patch, which leads

2Please note that ∧ is the logical operation and.
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to an efficient implementation of star-convexity.

2.3. Joint Formulation

For close targets such as adjacent vertebrae, en-

suring star-convexity is challenging. As outlined

in Figure 4, naive binary whole image formulations

will fuse targets and multi-label formulations are

less performant and do not come with the same

optimality guarantees as binary tasks. Our patch-

based binary formulation has neither problem, but

ambiguities may arise when results are re-embedded

into the image domain. This is especially true when

vertebrae are not well-separated by large interverte-

bral discs like in the cervical and thoracic section of

the spine. Here the patch-based energy could favor

to bridge the thin gap to the neighboring vertebrae.

To circumvent the ambiguities and preserve opti-

mality, we combine the patch-wise formulations into

a joint binary minimization problem with topolog-

ical constraints that guarantee a non-overlapping

segmentations between adjacent vertebra patches.

In particular, we seek a combination of patch-wise

labelings that minimizes

E
(
l1, . . . , l#vertebrae

)
=

#vertebrae∑
i=1

Ei
(
li
)

︸ ︷︷ ︸
Patch Energy

+

#vertebrae∑
i=2

Oi−1,i (li−1, li)︸ ︷︷ ︸
Non-Overlap

, (4)

where the introduced superscripts enumerate all

vertebra patches from head to foot (or vice versa).

The first sum pools the already introduced energies

of the individual vertebra patches and the second

sum handles the regions where neighboring vertebra

p
c2

r

c2

r2

c2

r2

c1 c1 c1r1 r1

Figure 4: Star-convexity implementation for neighboring

vertebrae. A binary whole image formulation (left) will fuse

both vertebrae (green region). The rationale is that any

voxel r will be “tied” to both centers c1 and c2 simultane-

ously. Multi-label formulations (middle) avoid this issue by

imposing star-convexity for each label individually, but opti-

mality guarantees of binary graph cuts are lost. Our binary

patch-wise formulation (right) has neither problem, because

the vertebra patches are treated individually.

patches overlap. We now discuss the implementa-

tion of the latter in greater detail.

2.3.1. Direct Solution

For any such overlap region, only one of the two

involved vertebra patches shall be allowed to assign

foreground to a shared voxel, because otherwise am-

biguities can occur. Hence, we seek to establish bi-

nary terms between the shared voxels of both ver-

tebra patches to prohibit such situations. The non-

overlap requirement of the patch-wise labelings is

equivalent to the following hard constraints

Oij
(
li, lj

)
=

∑
(p,q)∈Oij

[
lip = 1 ∧ ljq = 1

]
· ∞︸ ︷︷ ︸

T ij(lip,l
j
q)

, (5)

where Iverson brackets [ · ] assign infinite costs

when both patches select foreground for a shared

voxel.3 Set Oij comprises the voxels shared by

both patches. In particular, it contains the ordered

pairs (p, q) of voxels p from patch i and voxels q

3Please see Footnote 2.
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from patch j that represent the same voxel after

re-embedding of patches into the image domain.

The constraints presented in Equation 5 cannot

be realized with graph cuts directly, because it is

not graph-representable in its current form. In

particular, the T ij (·) violate T (0, 0) + T (1, 1) ≤

T (0, 1) +T (1, 0) [26], which essentially means that

the assignment of different labels should not be

cheaper than the assignment of similar ones. We

can, however, derive an equivalent formulation that

is indeed graph-representable.

2.3.2. Encoding Swaps

We go back to our representation of foreground

and background, which are implemented by lip = 1

and lip = 0, respectively. Noticing that this is a

convention, we could just as well have swapped the

meaning of labels. Specifically, we could have en-

coded foreground with lĩp = 0 and background with

lĩp = 1, whereby the introduced tilde differentiates

between the swapped and the standard encoding.

Obviously, swapping encodings for every verte-

bra patch does not solve the problem, because the

resulting non-overlap constraints are not graph-

representable either. However, when we swap only

every other vertebra patch from head to foot, then

the hard constraints of Equation 5 change to

T ij̃
(
lip, l

j̃
q

)
=
[
lip = 1 ∧ lj̃q = 0

]
· ∞, (6)

where standard-encoded patch i overlaps with

encoding-swapped patch j̃.4 It is easy to verify that

T ij̃ (·) as well as its straightforward counterpart

T ĩj (·) obey T (0, 0) + T (1, 1) ≤ T (0, 1) + T (1, 0).

4Please see Footnote 2.

The patch energies remain unaffected by the en-

coding swap if the unary terms as well as star-

convexity constraints are adjusted (swapped) ac-

cordingly. Please note that the argument does

not contradict the graph-representability of [26];

it rather exploits the available degrees of freedom.

Eventually, we compute the optimal labeling by the

algorithm of [25]. In particular, we use the imple-

mentation that is provided by the Darwin frame-

work [30].

The concept of encoding swaps is not limited to

our particular application. Let each image patch

be a node in a graph and let each overlap region

between two patches be an edge between their as-

sociated graph nodes. In this notation, every bipar-

tite graph, i.e. every graph that has a two-coloring,

can benefit from an efficient implementation of non-

overlap constraints via encoding swaps. Specifi-

cally, chain-like overlap layouts like ours are cov-

ered, but also all forms of tree-like layouts and cer-

tain grid-like overlap layouts too.

2.4. Neural Network

2.4.1. General Outline

So far we did not cover the computation of our

patch-wise presegmentation Ω. The latter shall

capture both appearance and shape information of

the central vertebra of each patch. To this end,

we follow the U-Net concept [31] and its extension

[32] to three-dimensional domains. Other network

architectures are reasonable too. For instance, one

could use a standard encoder/decoder concept at-

taching links on particular levels of the hierarchy

[33] or use pre-trained networks to improve learning

[34] as often done in general computer vision. For
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Figure 5: Schematic overview of our presegmentation network, which maps an extracted vertebra patch (first layer) to the

corresponding presegmentation result (last layer). The former contains the actual image content and the latter uses a standard

binary representation. The architecture closely follows the popular U-Net concept and its extension to three-dimensional

domains. We simplified the complexity of our network, making it more suitable for the vertebra segmentation task.

medical applications however, the U-Net architec-

ture is successful in many applications and models

are typically trained from scratch [35].

Our end-to-end presegmentation network is de-

picted in Figure 5. Akin to the standard U-Net, our

neural network is fully convolutional and consists of

two paths. Firstly, a contraction path, where the

information of the vertebra patch is first reduced

subsequently by interleaving several convolutional

and pooling layers. Secondly, an expansive path,

where the generated feature maps are upsampled

again to finally obtain the sought vertebra preseg-

mentation. To guide the expansion, additional in-

formation from the contraction path is introduced

through shortcut connections.

Our rational for developing a task-specific adap-

tation of the original U-Net is that not only time,

but also graphics hardware is a often limited in clin-

ical routine or when analyzing study data sets with

numerous subjects. Specifically, a standard three-

dimensional U-Net may not be used directly, be-

cause of the memory consumption that arises from

the large number of network parameters. Moreover,

it is unclear whether that many parameters are nec-

essary for our task in the first place, because verte-

bra appearance and shape varies rather moderately

unless pathological cases are considered. We believe

that reducing the network complexity is reasonable

for our task, which is backed by experimental re-

sults.

2.4.2. Architectural Detail

As depicted in Figure 5, our contraction path

comprises several contraction blocks, whereby each

block consists of zero padding, convolutional opera-

tors of size 3× 3× 3, batch normalization according

to [36], zero padding, convolutional operators of size

3× 3× 3 and, again, batch normalization. At the

end of the contraction block, a max-pooling oper-

ation of size 2× 2× 2 is used to downsample the

resolution of the arising feature maps for the next

depth level. To compensate the loss of information

due to the downsampling, the number of feature

maps doubles between the resolution levels [31]. We

start with an initial number of eight feature maps.

There are two contraction blocks in total.
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Along the expansion path, the feature maps are

processed in expansion blocks, whereby each block

consists of upsampling, convolutional operators of

size 3× 3× 3 that halve the number of feature

maps, concatenation with the output of the respec-

tive contraction block, convolutional operations of

size 3× 3× 3, batch normalization, convolutions

of size 3× 3× 3 and, again, batch normalization.

There are two expansion blocks in total. To finally

re-obtain the size of the vertebra patch, the last

layer uses a convolutional operator of size 1× 1× 1.

We use rectified linear units as activation functions

after each convolutional layer, except for the last

layer, where a sigmoid activation is used to be com-

patible with our loss function, which is the inverse

of the fuzzy Dice coefficient.

3. Experiments

3.1. Data Sets and Preprocessing

We carried out experiments on two data sets.

The first data set (called DS1) comprises T1- and

T2-weighted whole-spine images of 64 subjects with

varying health conditions from the “Study of Health

in Pomerania” [37]. For DS1 ground truth segmen-

tations are available from C3 to L5. The second

data set (called DS2) comprises 23 T2-weighted tho-

racolumbar images of young healthy adults and is

publicly available, cf. [15]. For DS2 ground truth

segmentations are available from T11 to L5. Both

data sets were acquired by turbo spin echo se-

quences on Siemens 1.5 Tesla imagers and recon-

structed sagitally at 1.12 × 1.12 × 4.4 mm and

1.25 × 1.25 × 2.0 mm, respectively. To simplify

the later processing, we upsampled all images with

linear interpolation in mediolateral direction, yield-

ing isotropic voxels of 1.12 × 1.12 × 1.12 mm and

1.25 × 1.25 × 1.25 mm, respectively.

After the upsampling, we applied our vertebra

localization [24], which correctly detected 96.0 % of

the vertebrae in DS1 at an accuracy of 3.45± 2.20

mm with respect to the known ground truth cen-

ters. For DS2 the detection rate was 98.1 % with

3.07±1.78 mm distance to the known ground truth

centers. The difference in localization quality be-

tween the data sets is mainly due to the difference in

laterolateral resolution (4.4 vs. 2.2 mm). For both

data set, the localizations took around one second

per vertebra (Intel Core i5 @ 4×3.30 GHz). All

falsely detected vertebrae were corrected manually

before the actual segmentation, i.e. a user-specified

vertebra center was used instead of the found loca-

tion.

In the remainder of this section, we first go into

detail on our patch-based presegmentation network,

discussing its training and the obtained results. Af-

terwards, we introduce our overall results, compar-

ing our novel graph cut-based method to previous

works on magnetic resonance-based vertebrae seg-

mentation. We assessed the standard measures of

segmentation quality: the Dice coefficient (DC), the

average Euclidean inter-surface distance (AD) and

the Hausdorff distance (HD).

3.2. Presegmentation Network

3.2.1. Sample Generation

To obtain training samples for each data set, we

extracted image patches of size 64× 64× 64 around

each of the preliminary located vertebra centers.

Since the extracted patches contain multiple par-
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Figure 6: Comparison of fold-averaged training subset (yellow curves) and validation subset (blue curves) losses over 300 epochs

for the T1-weighted (left) and the T1-weighted (middle) images from DS1 as well as for the T2-weighted images from DS2

(right).

tially visible vertebrae, the respective ground truth

patches were altered such that only the central ver-

tebra is segmented for any given patch. Our ratio-

nale is two-fold. Firstly, we are mainly interested

in the central vertebra for any given patch, since

the adjacent vertebrae are covered by the adjacent

patches in our graph cut formulation anyway. Sec-

ondly, the neural network is forced to learn not only

appearance but also shape information, because the

latter is the only source of information that helps

discriminating between the central and the other

vertebrae partially visible on each patch.

The quality of the presegmentation network and,

thus, also that of our overall method may depend

on the accuracy of the preliminary vertebra local-

ization. To deal with this issue, we apply data aug-

mentation, increasing the robustness of our network

with respect to localization inaccuracies. Specifi-

cally, we extract randomly displaced image patches

for each vertebra to mimic inaccuracies due to the

localization. In total we augmented the training

samples by three displaced patches per vertebra,

whereby displacements of up to 3 voxels along each

dimension of the image domain were sampled from

a uniform distribution. Displacements can occur

in either direction and are mixed among different

dimensions of the image domain to obtain an unbi-

ased sampling.

3.2.2. Cross-Validation

Our presegmentation network was implemented

in Keras [38] using Tensorflow [39] as back end.

To evaluate the quality of our presegmentation net-

work, we applied a five-fold cross-validation on each

of our data sets. Please note that we treat the T1-

and T2-weighted images from DS1 as separate data

sets within the cross-validation context. Moreover,

to avoid any subject-related bias, cross-validation

splits into training (4 of 5 folds) and validation (1

of 5 folds) subsets were performed on subject level

rather than on vertebra level. This prohibits any

situation where vertebrae of the validation subset

are visible, either partially or fully, on some patch

of the training subset. This is necessary because

otherwise the presegmentation network could learn

something about the validation subset indirectly

during its training.

For each cross-validation fold, the network was

trained on the four remaining folds for 300 epochs
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with a batch size of 12 patches utilizing the Adam

optimizer [40]. After each epoch all training patches

were shuffled randomly to increase robustness of the

training and avoid any memorization. The learning

rate of the optimizer was set to 0.0001, while all

other parameters were set as suggested in [40]. To

decrease the risk of over- and co-adaptation, we ap-

ply dropout [41] of 50 % in-between the contraction

and expansion path; the dashed box in Figure 5.

Please note that we did not use early stopping or

other strategies that utilize the validation data.

All cross-validations were performed on a

NVIDIA Titan Xp with 12 GB of memory, whereby

the training took up to 12 hours per fold, depending

on the number of subjects in the fold. When con-

sidering predictions only, then 100 patches may be

processed per batch, which gives run times of only

14.12 ± 0.28 ms per vertebra patch. More impor-

tantly, due to the small number of network param-

eters (about 85 000), our presegmentation network

may predict all vertebrae of the whole spine in one

batch on any graphics card with 6 GB of memory.

3.2.3. Experimental Results

Our cross-validation results are illustrated in Fig-

ure 6. As can be seen, the loss decreases faster

for DS1 than for DS2. This can be ascribed to

the larger number of samples in DS1, which has al-

most three times as many subjects and about three

times as many vertebrae per subject. Still, even for

DS2 the quality has saturated at about 250 epochs,

which underpins that our neural network requires

only a small training data set. Over-adaptation

to the training subset is not an issue either, since

losses decrease at approximately the same rate for

the training and validation subsets, irrespectively

of the data set. We cannot find any noticeably dif-

ferences between the T1- and T2-weighted results

for DS1, which means that our network captures

both sequences equally well. The obtainable qual-

ity is slightly better for DS2, which we ascribe to

the fact that DS2 contains only lower thoracolum-

bar vertebrae, which are easier to segment due to

their larger size.

If used on its own, then our presegmentation net-

work would yield Dice coefficients of 93.4 ± 3.7 %

and 95.9 ± 1.2 % for DS1 and DS2, respectively.

This is quite encouraging, because these results

are already better than all previous work on mag-

netic resonance-based vertebra segmentation. How-

ever, as motivated introductory, ambiguities occur

between adjacent vertebra even if the network is

trained to segment only the central vertebra of each

patch. To verify that, we checked any two neigh-

boring vertebra patches of each image and counted

the number of ambiguities, i.e. when segmentations

of adjacent vertebrae would overlap each other. Re-

garding DS1, ambiguities occurred 56.1 ± 0.2 % of

the time. The occurance of ambiguous segmenta-

tions correlates with the size of the vertebrae, mean-

ing that they occur more frequently in the cervi-

cal and section, but less frequently in the lumbar

section of the spine. This is backed by the re-

sults on DS2, for which ambiguities arose in only

11.7± 16.0 % of the cases.

3.2.4. Discussion

Given these results, an explicit handling of am-

biguities may not be necessary for settings where

only the lower thoracolumbar section of the spine
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is present and only young healthy adults are im-

aged, which both is true for DS2. However, for

more general settings, which include the cervical or

upper thoracic section of the spine or cover subjects

of varying health statuses - both is true for DS1 -

the explicit handling of ambiguities becomes nec-

essary. Our graph cut formulation addresses this

challenge naturally, while guaranteeing a globally

optimal result. Compared to using the presegmen-

tation network, we expect a statistically significant

(p < 0.01) gain in result quality at least for DS1.

For DS2 the result quality is already very good and

ambiguities are rather rare. Hence, we do not ex-

pect large effects on the overall result quality here.

3.3. Graph Cut Framework

3.3.1. Experimental Setup

Next we discuss the overall results of our method

and put it into context with previous works. To this

end, we set up a quantitative comparison in Table 1.

The given results for our method represent average

values from a large scale experiment, the details of

which are listed in Table 2. Within the experiment

we evaluated our graph cut approach with the same

five-fold cross-validation that was used for the pre-

segmentation network. To be precise, we pooled the

subjects into training and validation sets according

to the current fold, then trained a presegmentation

network on the training set, applied the network to

the validation set but inside of our graph cut frame-

work and reported the result quality and run time

for that fold. The complete cross-validation was

repeated another five times with uniformly drawn

configurations of yet unseen vertebra displacements

for each subject of each validation set. The combi-

nation of cross-validation and unseen displacements

ensures the resilience of our results.

3.3.2. Comparison to Related Work

As can be seen from results in Table 1, the pre-

sented method clearly improves upon our earlier

work [23]. Moreover, it also outperforms all other

previous works on magnetic resonance-based verte-

bra segmentation. This becomes most clear when

comparing our thoracolumbar results to those of

previous works. Please note that some works were

evaluated on the same data (marked by @ DS2),

which implies that results are directly comparable.

For all other works, the comparison needs to be

taken with a grain of salt. For DS2 we yield Dice

coefficients of 96.0 ± 1.0 %. Only the results of [6]

and [10] are come close to these values, showing

Dice coefficients of 90.8 ± 1.8 % and 93.4 ± 1.7 %,

respectively. Both works apply active shape mod-

els, which according to [6] take several minutes to fit

a single vertebra (Intel Core 2 Duo @ 2×2.0 GHz),

casting doubts about the applicability in practice.

Performance was not reported in [10], but we expect

even longer run times due to their convolutional

neural network. Their network predicts a vertebra

likelihood map voxel-wise in sliding window man-

ner, which will take several minutes per vertebra,

cf. the run time benchmark given in [23].

Our method took only 6.3 ± 0.21 s per image

on DS2 (Intel Core i5 @ 4×3.30 GHz). This is a

considerable speed-up compared to previous works,

where the segmentation of a section of the spine

may take minutes. For comparison, [15] reported

1.3 min (unknown multi-core system @ 3.0 GHz)

for thoracolumbar images with seven vertebrae and
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Table 1: Comparison to previous works on magnetic resonance-based vertebra segmentation. Work is categorized into 2D (mid-sagittal) and 3D (volumetric) analysis.

For each category, work is sorted chronologically. Please note that we included the 2D analysis techniques for completeness, their results are not comparable to the 3D

setting. Abbreviations: DS1 - data set 1; DS2 - data set 2; DC - Dice coefficient; AD - average inter-surface distance; HD - Hausdorff distance; C - cervical; L - lumbar;

TL - thoracolumbar; W - whole spine; T1w - T1-weighted; T2w - T2-weighted; P provided by author; R recalculated from results.

2/3D Works Section Weighting #Images #Vertebrae DC [%] AD [mm] HD [mm]

2D

Huang [42] C, L, W T2w ? 52 96±? ? ?

Ayed [20] L T2w 15 75 85± 5.1 ? ?

Zheng [21] L T1w, T2w 5 ? 96.6± 0.3 ? 1.7± 0.2

Ghosh [19] L T2w 13 ? 84.4± 3.8 ? ?

Athertya [22] TL T1w 16 ? 86.7± 4.1 ? 5.40± 1.12

3D

Stern [3] TL T2w 9 75 ? 1.85± 0.47 ?

Neubert [6] TL T2w 14 132 90.8± 1.8R 0.67± 0.17R 4.08± 0.94R

Kadoury [8] TL T1w 8 136 ? 2.93± 1.83R ?

Schwarzenberger [11] L T2w 2 10 81.3± 5.1 ? ?

Suzani [9] L T1w 9 45 ? 3.02± 0.82R 9.20± 2.43R

Zukic [4] TL T1w, T2w 17 153 79.3± 5.0P 1.76± 0.38 11.89± 2.65P

Chu [15] @ DS2 TL T2w 23 161 88.7± 2.9 1.5± 0.2 6.4± 1.2

Hille [13] TL T1w 6 34 84.8±? 1.29± 0.42 6.55±?

Korez [10] @ DS2 TL T2w 23 161 93.4± 1.7 0.54± 0.14 3.83± 1.04

Gaonkar [16] TL T1w, T2w 23 ? 79± 5.0 ? ?

Hille [14] @ DS2 TL T2w 23 161 88.2± 1.9 1.66± 0.28 6.01± 1.01

3D

Rak [23] @ DS1 W T1w, T2w 128 1412 85.2± 4.1 1.39± 0.34 5.39± 1.56

Rak [23] @ DS2 TL T2w 23 161 90.3± 2.0 1.23± 0.24 5.20± 1.04

This work @ DS1 W T1w, T2w 128 1412 93.8± 2.6 1.06± 0.23 4.06± 1.14

This work @ DS2 TL T2w 23 161 96.0± 1.0 0.79± 0.25 3.85± 2.20
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[9] segments lumbar images in “less than two min-

utes” (Intel Core i5 @ 4×2.5 GHz). The difference

becomes most clear when considering the run time

per vertebrae. For instance in [13] the computation

“never exceeded 60 s” (unknown system), which got

improved in [14] to 21.9 s (unknown system) on av-

erage per vertebra. In [3] and [6] even several min-

utes per vertebra (Intel Core 2 Duo @ 2×2.0 GHz

and 2.83 GHz, respectively) were reported. In gen-

eral, all previous works state run times well above

ten seconds, while ours took only 0.9 ± 0.03 s per

vertebra (Intel Core i5 @ 4×3.30 GHz) for DS2.

3.3.3. Discussion

The results shown in Table 1 indicate that DS1

is more challenging than DS2. Specifically, the

Dice coefficients decrease to 93.8 ± 2.6 %, which is

still better than what was reported in any previ-

ous work. Although the improvement is smaller,

we think that these results are encouraging too.

The rationale is that DS1 not only contains lum-

bar vertebrae, but also cervical and upper thoracic

vertebrae, which are harder to segment due to their

smaller size. Exemplary results for all data sets are

depicted in Figure 7. When considering the T1- and

T2-weighted subsets of DS1, we observe that the

latter sequence gives slightly better results. Specif-

ically, the T1- and T2-weighted images yield Dice

coefficients of 93.6±3.0 % and 94.0±2.3 %, respec-

tively. Presumably, the difference can be explained

by the improved contrast to intervertebral discs for

the latter sequence. For DS1 the run time per ver-

tebra is 1.35±0.08 s, which means that whole spine

images can be segmented in as little as 32.4±1.92 s

(Intel Core i5 @ 4×3.30 GHz) on average.

Comparing the results of our graph cut frame-

work to those of the presegmentation network, we

observe that Dice coefficients rise by 0.4 % on av-

erage for DS1. According to a one-sided Welch

t-test, the improvement is statistically significant

with p = 2.3359×10−11. Not only the overall qual-

ity increases, but also its spread decreases. Specifi-

cally, the standard deviation of the Dice coefficients

reduce by 1.1 % on average for DS1. There is also

a measurable increase in result quality (by 0.06 %)

and a decrease in spread (by 0.17 %) for DS2, but

both are one order of magnitude smaller than for

DS1 and thus not statistically significant. These

results underpin that the handling of ambiguities

may not be beneficial for lumbar settings and young

healthy adults. However, they also underpin that

for more general settings, which include the cervical

or thoracic section of the spine or cover subjects of

varying health statuses, explicit handling of ambi-

guities is clearly beneficial.

4. Conclusion

We proposed an automatic approach for fast

vertebral body segmentation in three-dimensional

magnetic resonance images of the whole spine. To

this end, we employ a novel combination of a task-

specific convolutional neural network with a graph

cut formulation based on encoding swaps, which en-

able the segmentation of multiple vertebrae in an

efficient binary problem formulation without risk-

ing ambiguous segmentations of adjacent vertebrae.

Our approach grounds on our earlier work [23],

where we showed that engineered appearance and

shape features can compete with recent machine
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Figure 7: Eight topmost rows: segmentation results on T1- (left column) and T2-weighted (right column) images of four

subjects from DS1. Two bottommost rows: segmentation results on T2-weighted images of four different subjects from DS2.

Odd rows: mid-sagittal slices after re-embedding of patch-wise segmentation results into the image domain. Vertebra coloring

reflects encoding swaps. Even rows: particular coronal, transverse and sagittal views of every other vertebra from head to foot.
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learning-based methods if integrated into our graph

cut formulation. Within this work, we replace the

hand-crafted appearance and shape features by an

end-to-end trainable convolutional neural network

and demonstrate how this can be integrated effec-

tively into our graph cut formulation to yield a

topologically correct segmentations.

On the application side, our work is the first that

applies to different imaging sequences as well as to

the whole spine, which we demonstrated on two

data sets. The first data set contains T1- and T2-

weighted whole-spine images of 64 subjects. The

second data set comprises 23 T2-weighted thora-

columbar images and is publicly available. Com-

pared to our earlier work [23], the segmentation

quality rose by a significant 5.7 % to 8.6 %, yield-

ing Dice coefficients of 93.8± 2.6 % and 96.0± 1.0 %

for both data sets, respectively. Our results are

also superior to those of previous works, while

our method takes only a fraction of their run

time. In particular, run times were 1.35± 0.08 s

and 0.90± 0.03 s per vertebra for both data sets,

respectively. A complete whole spine segmentation

took 32.4± 1.92 s on average.

Our work has limitations. In case severe patholo-

gies alter the appearance or shape of a vertebra,

e.g. metastases or burst fractures, the segmenta-

tion quality may be poor. Any available appear-

ance or shape modeling technique will struggle to

capture the large diversity accompanied with such

cases. To be precise, we are not aware of any work

addressing this issue. Neural network-based tech-

niques like ours should be able to cover even severe

pathological cases, but only after a large training

data set becomes available, which is not the case

as of today. In the future, we want to address

this challenge. Moreover, we plan to incorporate

intervertebral discs into our binary problem formu-

lation, enabling the segmentation both structures

at the same time. Besides that, another direction

of future work would be to somehow the merge the

localization and segmentation step into a unified

framework to overcome the need for user interac-

tion in case of erroneous localizations.
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