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ABSTRACT

Individualized and accurate segmentations of the prostate are

essential for diagnosis as well as therapy planning in prostate

cancer (PCa). Most of the previously proposed prostate seg-

mentation approaches rely purely on axial MRI scans, which

suffer from low out-of-plane resolution. We propose a method

that makes use of sagittal and coronal MRI scans to improve

the accuracy of segmentation. These scans are typically ac-

quired as standard of care for PCa staging, but are generally

ignored by the segmentation algorithms. Our method is based

on a multi-stream 3D convolutional neural network for the

automatic extraction of isotropic high resolution segmenta-

tions from MR images. We evaluated segmentation perfor-

mance on an isotropic high resolution ground truth (n = 40

subjects). The results show that the use of multi-planar vol-

umes for prostate segmentation leads to improved segmenta-

tion results not only for the whole prostate (92.1% Dice sim-

ilarity coefficient), but also in apex and base regions.

Index Terms— MRI, prostate segmentation, deep con-

volutional neural networks, multi-stream architecture, multi-

planar segmentation, 3D planning, 3D model generation

1. INTRODUCTION

With 180,890 new cases and more than 26,000 deaths in the

US in 2016, PCa is the most common type of cancer and is the

second most deadly cancer among men [1]. Due to its high

soft-tissue contrast, MRI is often used for clinical purposes

in PCa assessment and therapy. Segmentation of the prostate

extracted from such data is commonly needed in research and

clinical applications. For example, it is often used to enable

MRI-TRUS (transrectal ultrasound) fusion guided biopsy [2],

radiation dose planning in brachytherapy and external beam

radiotherapy [3]. Shah et al. [4] utilized segmentation of

the prostate to correlate MRI findings with the prostatectomy

specimen.

A variety of MRI prostate segmentation algorithms have

been proposed as summarized in [5]. In the last three years,

Fig. 1. Illustration of the effect of poor inter-plane resolution on

segmentation. The top row illustrates the difference between in-

plane resolution (left) and inter-plane resolution for an axial volume.

No kind of interpolation was performed on this volume. In the bot-

tom row, the manual segmentation, based only on the axial slices, is

depicted by a red contour. A superior contour is visualized in yel-

low, whereby we fused the axial, coronal and sagittal segmentation

by shape-based interpolation.

deep convolutional neural networks (CNN) were introduced

into the context of medical segmentation. The fully convo-

lutional network by Long et al. [6] enables segmentation in

an end-to-end fashion. Furthermore, Ronneberger et al. [7]

developed the U-Net which is frequently used for medical im-

age segmentation. These architectures have been adapted for

prostate segmentation. The fully connected CNN from [6]

was fine-tuned for the purpose of prostate segmentation in

[8]. Zhu et al. [9] applied a deeply supervised 2D U-Net

to prostate segmentation. Recently, 3D CNNs were estab-

lished for the prostate segmentation. Yu et al. [10] applied

3D CNNs with a combination of short and long residual con-

nections to the prostate. So far, this work has performed best

at the PROMISE12 prostate segmentation challenge [11].

All these methods rely purely on the axial T2-weighted

MRI scan of the prostate. Prostate MRI is highly anisotropic
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for the typical acquisition protocols, resulting in a factor of

6-10 difference between the out-of-plane and in-plane resolu-

tion. As can be seen in the top row of Figure 1, this leads to a

strong partial volume effect. Consequently, the prostate gland

boundary can be challenging to accurately localize in the ax-

ial image in the apex and base regions, where prostate tissue

can not be clearly distinguished from surrounding structures

like seminal vesicles or neurovascular bundles. Additionally,

extracting surfaces from axial volumes can cause step arti-

facts in 3D prostate models due to the low inter-plane resolu-

tion. Shah et al. [4] addressed this problem by manually seg-

menting the prostate from three orthogonal MRI scans (axial,

sagittal and coronal) and fusing them with shape-based inter-

polation in order to generate a high-resolution surface. Simi-

larly, Cheng et al. [12] automatically segmented the prostate

for the three views by holistically-nested edge detector net-

works. For each volume, a 2D network is trained separately

and subsequently the three segmentation outcomes (with low

out-of-plane resolution) are used for surface extraction with

ball pivoting, followed by Poisson surface reconstruction to

obtain a hole-free and smooth surface.

Since standard prostate imaging protocol includes multi-

planar (axial, coronal, sagittal) T2-weighted images [13], we

aimed to improve the fidelity of the prostate gland segmen-

tation by utilizing all of the available scan directions to over-

come the problems that arise from the low inter-slice resolu-

tion of the MRI scans. Our contributions in this work are:

• Instead of using three 2D networks as in [12], we pro-

pose obtaining a smooth segmentation from the orthog-

onal MRI scans with one single multi-stream volumet-

ric network, which greatly simplifies training.

• The resulting segmentation has isotropic voxels with

high resolution and enables an easy and fast extraction

of the smooth surface for such applications as MRI-

TRUS fusion and therapy planning.

• We created a high resolution ground truth that better

reflects boundaries in critical apex and base regions.

In addition to axial segmentations, sagittal and coro-

nal manual segmentations are acquired and fused to an

isotropic volume (yellow contour in Figure 1). The

ground truth dataset will be released publicly for other

researchers.1

2. METHODS

In this work, we propose a method that simultaneously uses

orthogonal scans for a high resolution segmentation of the

prostate with 3D-CNN. First, we describe the architecture of

the network, its training and the pre- and postprocessing of the

data. Second, we give details on the high resolution ground

truth generation.

1http://isgwww.cs.uni-magdeburg.de/cas/isbi2018

2.1. Network Architecture

Our method is based on the 3D U-Net [14]. The input im-

age is processed in an analysis (downsampling) and synthesis

(upsampling) path, each containing four resolution steps. In

the analysis path, the image is downsampled to increase the

receptive field of the network. Each layer in this path consists

of two 3× 3× 3 volumetric convolution filters followed by a

rectified linear unit (ReLu). A 2×2×2 maxpooling operation

with a stride of 2 along each dimension downsamples the vol-

ume to half its size. In the synthesis path, the convolutions are

preceded by a deconvolution (transposed convolution) with a

2× 2× 2 kernel and a stride of 2 that upsamples the features

back to the input resolution. For each resolution layer in the

analysis path, the filter size is doubled. Respectively, at each

resolution step in the synthesis path, the filter size is halved.

The last layer is a 1 × 1 × 1 convolution filter followed by a

sigmoid function that computes the binary label of the voxel.

By means of skip connections, high resolution information is

passed from the analysis path to the same level of the synthe-

sis path.

The described network is modified for the multi-planar

segmentation with a multistream-architecture as illustrated in

Figure 2. Our network has three analysis streams, where the

streams process axial, coronal and sagittal scans individually.

The streams are then concatenated at the lowest resolution

level. Skip connections are established from each stream to

the respective level of the synthesis path.

2.2. Preprocessing

The orthogonal scans of the prostate are acquired in the same

frame of reference one after another, and in most cases do not

require registration. When misalignment was observed due

to motion, we applied manual rigid registration. As part of

preprocessing, the three scans are resampled by linear inter-

polation into a common coordinate system with a resolution

of 0.5× 0.5× 0.5mm. This resembles the best in-plane reso-

lution of the single scans, which usually have slice thickness

of ≈ 3mm. Next, the per-plane images are cropped to the

volume corresponding to their intersection. Prior to normal-

izing the intensity of the images to an interval of [0,1], the

intensities are cropped to the 1st and 99th percentiles.

2.3. Training of the Network

We selected the negative Dice similarity coefficient (DSC)

loss function as the objective function of the network:

loss = −
2
∑

N

i
pigi

∑
N

i
p2
i
+
∑

N

i
g2
i

with N being the total number of voxels and pi the predicted

voxels and gi the ground truth binary voxels. Adam Optimizer

[15] was used with default parameters except for the learn-

ing rate. The network was trained on a NVIDIA Titan Xp
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Fig. 2. Architecture of the proposed multi-stream 3D U-Net. Numbers inside the layers correspond to number of feature maps. The full

volumes (168× 168× 168) are used as network input. For reasons of simplicity the original U-shape is not maintained.

for 1000 epochs, with an early stop mechanism if the vali-

dation loss does not change by δ = 0.001 for 100 iterations.

The batch size was set to 1 due to graphical memory capac-

ity. In order to increase the number of training images, data

augmentation is introduced by left-right-flipping of the input

volumes. Top-bottom and front-back flips were not consid-

ered since the orientation of the prostate bears valuable clues

for segmentation. As postprocessing of the prediction, a con-

nected components analysis was applied to the segmentation

mask. The isosurface is extracted with the marching cubes

algorithm. The total computation time for preprocessing, pre-

diction and surface extraction of an unseen image is less than

10 seconds.

For the evaluation we set aside 15 images, each containing

axial, coronal and sagittal scans for the test. We used 5-fold

cross validation on 25 images for selecting the best hyperpa-

rameters such as learning rate and number of epochs and re-

trained the network again on the whole training set with these

hyperparameters. An unbiased performance estimate is given

by evaluating this model on the set-aside test data. Since we

were interested in the effect of improvement by use of the

additional orthogonal planes, we also evaluated the simple

single-stream 3D U-Net on the axial volumes. The procedure

was the same as for the multi-stream multi-planar network.

2.4. Dataset and Ground Truth

As the PROMISE12 dataset provides only axial volumes,

we tested the presented approach on the SPIE-AAPM-NCI

PROSTATEx challenge dataset [16]. We selected 40 T2-

weighted MR scans which contained axial, coronal and

sagittal volumes. The alignment was checked visually us-

ing 3D Slicer [17] (http://slicer.org). For three cases, we had

to register the volumes manually. The segmentations were

obtained manually for each view on the original resolution

of the image by a medical student and later corrected by

an expert urologist. Then, the signed distance transforma-

tion of the three segmentations is computed. Subsequently,

the anisotropic distance volumes are transformed into an

isotropic high resolution representation with linear interpo-

lation. By averaging the distances and thresholding them

with zero, we obtain the fused segmentation (shape-based

interpolation as in [18]). The resulting segmentations were

manually verified and corrected further if necessary.

3. RESULTS

We evaluated our approach with the following metrics that

were also used in the PROMISE12 challenge: DSC, abso-

lute relative volume difference (aRVD), 95% - Hausdorff-

Distance (95-HD) and the average of shortest distances be-

tween boundary points of both volumes (ABD). These metrics

represent both boundary-based and volume-based evaluation

and are calculated in 3D. A detailed definition of these metrics

can be found in [11]. Evaluation was performed for the whole

volume as well as for apex, base and mid-gland regions, each

of which contains 1/3 of the prostate. The quantitative results

of the experiments are presented in Table 1 and qualitative

results can be found in Figure 3.

A mean DSC of 92.1% was obtained for the whole

prostate by use of the proposed multi-planar segmentation

with the multi-stream network, whereas the original architec-

ture based on only the axial volume obtained a DSC of 90.7%

(p-value of 0.0085 in a one-sided paired t-test). While aRVD
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Fig. 3. Qualitative results of a) the best (DSC=94.8%), b) an av-

erage (DSC=92.5%) and c) the worst segmentation (DSC=85.4%).

The ground truth is depicted by the yellow contour, the prediction of

the multi-stream network is shown in red. d) 3D visualization of the

surface distance from multi-planar segmentation (top) and axial-only

segmentation (bottom) of another volume.

did not change by the multistream network, 95-HD improved

by more than 22% to 3.44mm and the ABD improved by

16%. Hence, we reduced leaking boundaries by use of the

multi-plane approach and produced a result that is closer to

the ground truth boundary. Improvement was also consistent

considering the apex and base region. Only the mid-gland

region could be equally well segmented by both techniques.

One can assume that this is because of the good contrast the

prostate boundaries have in the mid-gland region on axial

slices. Comparing our results to Cheng et al. [12] who also

use orthogonal volumes (DSC = 88.6%), we obtain higher

accuracy. However, this has to be considered with caution,

because we used different datasets.

In a second experiment, we evaluated the effect of skip-

connections that pass high resolution information from the

analysis path to the synthesis path of the network, by repeat-

ing the experiment with removed skip connections. For multi-

planar segmentation, performance was dropped by removing

Table 1. Evaluation results for axial and multi-planar networks

(distances in mm).

DSC aRVD 95-HD ABD

Multi-Planar Apex 85.1% 23.0% 4.20 1.33

Mid-gland 95.5% 5.3% 2.30 0.79

Base 90.2% 9.9% 3.14 0.99

Whole 92.1% 8.3% 3.44 1.00

Axial Only Apex 82.8% 25.2% 5.26 1.56

Mid-gland 95.2% 4.1% 2.87 0.85

Base 87.5% 12.3% 4.16 1.30

Whole 90.7% 8.3% 4.43 1.20

the skip connections: the DSC decreased to 91.6% and the

95%-HD distance increased to 3.71mm. Thus, the transfer of

high resolution information to the synthesis path of the net-

work does improve segmentation performance.

4. CONCLUSION

The aim of this work is to provide a simple yet powerful

framework for the accurate segmentation and surface extrac-

tion of the prostate by use of axial, sagittal and coronal vol-

umes. We proposed a 3D multi-stream CNN that simulta-

neously computes an isotropic high resolution segmentation

from the three orthogonal volumes that can be easily used for

surface extraction. We evaluated the segmentations against an

isotropic manual ground truth that takes all three orthogonal

volumes into account. Results show that an accurate segmen-

tation can be obtained with this proposed method, improving

the outcome compared to a single stream network using only

axial volumes of the prostate. The created ground truth will

be made available online for other researchers.

To the best of our knowledge, the only approach that uti-

lizes the multi-planar volumes in prostate segmentation with

deep learning is the one proposed by Cheng et al. [12]. Our

method offers several advantages over this approach. First, by

using a single network, as compared to the three networks, we

can simplify the training process. Second, computationally

expensive surface extraction methods, such as ball pivoting

and Poisson surface reconstruction, are not required: the sur-

face can be easily generated from the high resolution segmen-

tation. Consequently, our approach leads to faster prostate

model generation while obtaining accurate results.

Because orthogonal volumes are usually included in the

PCa MRI protocols, this work does not require any modifi-

cation to the imaging procedures, and should encourage ef-

forts to incorporate multi-planar volumes into the segmenta-

tion process for improved precision of prostate model genera-

tion for individualized therapy planning. Future work should

include the enhancement of the networks architecture by use

of residual connections. Additionally, automatic registration

should be employed for cases where the volumes are not well

aligned. Finally, a more clinical-relevant evaluation should

be conducted, incorporating the effect of segmentation on the

registration accuracy for targeted fusion biopsy procedures.
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