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ABSTRACT

The segmentation of the thyroid in ultrasound images is a field of active research. The thyroid is a gland of
the endocrine system and regulates several body functions. Measuring the volume of the thyroid is regular
practice of diagnosing pathological changes. In this work, we compare three approaches for semi-automatic
thyroid segmentation in freehand-tracked three-dimensional ultrasound images. The approaches are based on
level set, graph cut and feature classification. For validation, sixteen 3D ultrasound records were created with
ground truth segmentations, which we make publicly available. The properties analyzed are the Dice coefficient
when compared against the ground truth reference and the effort of required interaction. Our results show
that in terms of Dice coefficient, all algorithms perform similarly. For interaction, however, each algorithm has
advantages over the other. The graph cut-based approach gives the practitioner direct influence on the final
segmentation. Level set and feature classifier require less interaction, but offer less control over the result. All
three compared methods show promising results for future work and provide several possible extensions.
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1. INTRODUCTION

The thyroid gland is a butterfly-shaped organ, consisting of two lobes connected by an isthmus. It is located in
the neck, below the Adam’s apple. The thyroid is part of the endocrine system and regulates important body
functions. A change in volume is a reliable indicator for pathological changes. Imaging techniques are used
frequently to measure the volume, with ultrasonography being the most prominent applied method for thyroid
gland diagnostics.1

Ultrasonography has many advantages, including its ease of use and inexpensiveness. However, it also suffers
from imaging artifacts and noise. There already exist a number of publications presenting methods for freehand-
tracked three-dimensional ultrasound (3DUS) thyroid volume measurement. However, to the knowledge of the
authors, no publication compares methods based on practicality-oriented characteristics.

In this paper, we compare and discuss three methods of thyroid segmentation based on their accuracy and
ease of use. This analysis is done to make the methods directly comparable and add evaluation relevant to
practitioners. In practice, fast and easy to use methods are preferable for regular application. We compare the
methods to determine which ones are viable. We only consider methods that segment the exact thyroid. We
provide the sixteen 3D volume datasets including the ground truth online and make them publicly available to
support further research in this domain.

The conventional method of determining thyroid volume is using 2D B-mode ultrasound and approximates
simple ellipsoidal shapes for both thyroidal lobes. The volume of each lobe is calculated by multiplying its dimen-
sions lengthmax, widthmax and depthmax and a correction factor f. Different values for f have been recommended,
but usually 0.5 is applied in clinical routine.1,2
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Freesmeyer et. al. have demonstrated that 3DUS is equivalent to CT and MRI in thyroid volume estimation.
They also determined that manually tracing the thyroid is superior to the ellipsoid model for both regularly
shaped and deformed thyroid phantoms.1

Automated segmentation using image processing and computer vision techniques instead of manually tracing
the thyroid’s shape is desirable for practical application. Several methods have been applied to the thyroid
segmentation problem in the past, including neural networks,3 geodesic active contours4 and support vector
machines.5

Only a few papers comparing different 2D ultrasound thyroid segmentation methods have been published
so far.6,7 Zhao et al. introduce a new segmentation algorithm and compare seven different methods in their
work.7 Their tested algorithms also include basic segmentation methods like edge detection, thresholding, region
growing and watershed segmentation. Additionally, they tested active contour, normalized graph cut and their
improved normalized graph cut. They found that only their improved normalized graph cut would produce a
meaningful segmentation. However, their results only show segmentation on a single image, and they provide
little information about their testing procedure and the data they used.

Kaur et al. compare three algorithms: active contours without edges, localized region based active contours
and distance regularized level set. They compared the algorithms on scintigraphy and ultra sound images, based
on parameters like execution time, number of iterations and precision. They also provide little information about
the data they used for evaluation and their results are unclear. They identified the localized region based active
contour algorithm as the best out of the three.6

The current comparative work only focuses on strictly 2D image segmentation; none compares advanced
3DUS image segmentation methods to the authors knowledge. In summary, our contributions are:

• Development of three thyroid segmentation algorithms

• Comparison of these algorithms based on

– Segmentation quality

– Usability

• Publicly available data for further research

2. MATERIALS AND METHODS

Our test data consists of sixteen records of 3DUS volumes reconstructed from a tracked free-hand sweep. The
volumes are stored in DICOM format and were directly obtained from the ultrasound imaging device. The device
used is a GE Logiq E9 XDclear 2.0 extended with Ascension driveBay electromagnetic tracking. The probe used
is the GE ML6-15. To run the 2D segmentation algorithms on the volume, it was split into individual slices.
All files contain one lobe of the thyroid, but can include some parts of the isthmus and opposite lobe. It was
not possible to construct a usable 3D volume from a complete sweep of both sides in one continuous motion.
The ground truth contains the isthmus as part of the segmented region. It was produced by a medical expert
using MeVisLab.∗ The thyroid was manually traced with Contour Segmentation Objects (CSOs) which were
converted to a 3D mask afterwards via the CSOConvertoTo3DMask module. All the records were taken from
healthy thyroids. The sixteen records and corresponding ground truth images are available at OpenCAS.†

As described in the prior section, many methods have been developed. In this section, we describe and
motivate the methods we selected for comparison. The three selected methods are a level set, graph cut and a
feature classifier-based approach.

∗MeVis Medical Solutions AG, Bremen, Germany: http://www.mevislab.de/
†Open-CAS: http://opencas.webarchiv.kit.edu/data/thyroid.zip

http://www.mevislab.de/
http://opencas.webarchiv.kit.edu/data/thyroid.zip
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Figure 1. (a) Level set initialization: The user draws a rectangle to mark the size and location of the thyroid lobe.
(b) Graph cut initialization: Violet scribbles mark the outside, yellow the inside of the thyroid.

2.1 Level Set

Our first approach makes use of a level set segmentation technique developed by Chan and Vese, named active
contours without edges.8 This method is based on the minimization of the Mumford-Shah functional. The
contour evolution depends on region attributes instead of gradient-based edges. Hence, this method is a suitable
candidate for the segmentation of noisy ultrasound images where the organ boundaries are often fuzzy and not
clearly visible. Furthermore, the thyroid is visually separated from the other organs in that region, which are
darker and less homogeneous.

We implemented the algorithm in MATLAB to segment the thyroid in 2D images. Figure 2a shows an
example segmentation in red. The main principle of this approach is to perform the segmentation task in an
initial axial slice of the tracked 2D ultrasound sweep selected by the user, and then use this first result in
additional segmentations of consecutive slices, by placing the initialization contour around the center of the last
segmentation. This slice-wise approach was chosen because level set segmentation methods can show difficulties
with narrow or elongated structures, like the isthmus.

The user is only required to select a single slice and draw a rectangle inside the thyroid lobe to initialize
the segmentation process, see Fig. 1a. After this step, no more interaction is necessary, but manual corrections
in form of re-initializations are possible. However, the result of the level set segmentation is very sensitive to
changes in the user’s initializations, making the interaction less intuitive than a graph cut-based technique.

2.2 Graph Cut

The graph cut approach also semi-automatically segments 2D ultrasonic data and combines the result to form
a 3D model of the thyroid. It was realized using the implementation of the GrabCut algorithm in the OpenCV
library.9 The user marks the thyroid and surrounding regions by placing yellow and violet scribbles in some of
the 2D slices, see Fig. 1b. This input is then used by the algorithm to segment the thyroid. Figure 2a shows the
result in green. The output can be interactively altered by the user to correct any errors in the process.

The 2D contours of the segmented thyroid slices are combined to a 3D model. Interpolated shapes are used
as an initialization for a completely automated GrabCut in other slices where the thyroid has not been fully
segmented yet. The user checks the results and may correct any errors. The 3D model is updated with the
new information and further automated 2D segmentations are triggered. This process repeats until a sufficiently
detailed 3D model of the thyroid has been created. The accuracy of this method improves with the amount of
interaction invested by the user.
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Figure 2. (a) Ground truth reference (white) and segmentation results: level set (red), graph cut (green) and feature-based
classifier (blue). (b) Visualization showing the right lobe of the thyroid and the arteria carotis.

Thorough testing and analysis of this approach was done in cooperation with our clinical partner to find the
optimum between the computationally intensive fully automated segmentation and the time-consuming user-
assisted segmentation to increase accuracy while reducing computation time and interaction complexity. We
suggest a compromise of allowing the user to intervene every 10 slices or every 2 mm. However, in practice the
level of interaction necessary should be individually determined with each new case.

2.3 Feature-based Classifier

This segmentation method is based on the training of a decision tree, trained with three image features. The
motivation for this segmentation method was the need for a fast method that allows interactive segmentation
of the thyroid. Due to its speed, it is possible to implement a live visual feedback showing the segmentation
to the practitioner. Based on this feedback the decision can be made whether or not the segmentation needs
adjustment. With a few clicks, image regions inside and outside the thyroid can be selected such that the features
from that region are used for training of the classifier. The algorithm was implemented using OpenCV.

The feature selection is based on the work of Chang et al.3 We compute the coefficient of variation CV = σ/µ,
with σ being the standard deviation and µ the mean, on two different sized local neighborhoods. Additionally,
the mean of the smaller of the two neighborhoods is used as a feature. However, Chang et al. used additional
image features as well. In separate tests, we observed that adding features only improves the segmentation
marginally, while the process of feature computation takes significantly more time. The tests were only run on
healthy thyroids so that the addition of features might see significant improvement in pathological cases. For
the same reasons (lower computation time with small loss in accuracy) a decision tree was chosen as classifier
instead of the RBF neural network used in the work of Chang et al. A drawback of this method is that no local
changes are possible. Adding additional training samples via interaction changes the segmentation globally.

The segmentation obtained by the classifier itself contains some noise and regions which are not connected to
the thyroid. To clean the segmentation, we performed morphological opening followed by a connected component
analysis. This is only done once, after the user interaction has been completed and confirmed. Because the
selected features already are defined on a local neighborhood, we did not perform pre-processing, e.g. smoothing.

3. RESULTS AND DISCUSSION

For visualization of the final segmentation results MeVisLab was utilized again: A fully automated method of
segmenting the neighboring arteria carotis was implemented for this purpose using a Hessian-based vesselness



Level Set Graph Cut Classifier
0.5

0.6

0.7

0.8

0.9

1

D
ic

e

Figure 3. A box plot depicting Dice coefficients per algorithm. Whiskers represent minimum and maximum values.

filter.10 It works reliably if the artery is completely contained within the borders of the 3D ultrasound image
and recorded without any discontinuities. The result is a combined visualization, see Fig. 2b. For evaluation of
the quality of the segmentation we chose the Dice coefficient. This similarity index is commonly used in medical
image segmentation to compare algorithm output against reference masks.

On average, the three methods perform almost identically, with a Dice coefficient of roughly 70 percent
compared to the reference segmentation. However, the range of quality differs, see Fig. 3. The feature-based
classifier showed an outlier where the segmentation was particularly under-segmented (detailed overview in
Figure 4). This was the case for a thyroid with a thin shape. Connected component analysis cannot prevent
a leakage effect in some instances. Balancing under- and over-segmentation was also an issue for the level set
approach. Limiting the number of evolution iterations to avoid leakage resulted in the contour not reaching into
thin structures like the isthmus. The quality of the graph cut results scales with the amount of user interaction,
which makes this method unique in this regard. This explains the greater distance between the best and worst
result when using the graph cut method.

The interaction time and effort also differ between methods. The level set method requires an initial contour
for segmentation. In case of over- or under-segmentation, the level set must be re-initialized by the user. Re-
initialization was required 6.7 times on average. The process of initialization takes only few seconds, but the
segmentation process is slow. The graph cut requires the most amount of interaction by the user. The average
time spent per data set was 36 seconds. The feature-based classifier takes minimum interaction with a simple
click inside and outside of the thyroid in the best case. This is mostly intuitive, but data sets with lower quality
can make sample selection difficult. If the segmentation contains errors, additional clicks for adjustment are
required. Sample selection took 13 seconds on average. If wrong samples were selected, the process has to be
started from the beginning. This is a drawback of the implementation, but minor due to the immediate feedback
and short interaction required.

4. SUMMARY AND CONCLUSION

In this paper, we compared three methods for thyroid segmentation in 3DUS. All methods aim to compute the
exact object boundaries. We compared the methods based on the accuracy against a manually segmented ground
truth. We also compared their usability based on duration and complexity of interaction.

No significant differences in accuracy between the compared algorithms were observed. The average Dice
coefficient is similar, but varied most for the graph cut approach. In terms of interaction time the level set
approach as well as the feature-based approach are preferable, whereas the graph cut method requires the most
amount of interaction but offers practitioners the best control over segmentation results. All three methods show
promising potential.
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Figure 4. The Dice coefficients per data set and algorithm. Exact data can be found in Table 1.

In future work, the compared methods can be refined or combined to improve accuracy, for example offering
the graph cut as an optional post-processing step after one of the other methods. Another possibility for
improvement would be the automation of initialization to avoid user interaction at all. The described methods
have yet to be tested on pathological datasets, which is important to evaluate the practical use and could indicate
areas for further improvement.

APPENDIX A. DATA

Table 1. The Dice coefficients per data set and algorithm.

D01 D02 D03 D04 D05 D06 D07 D08

Level Set 0.688 0.646 0.685 0.752 0.655 0.593 0.754 0.742

Graph Cut 0.848 0.746 0.676 0.912 0.734 0.683 0.646 0.775

Classifier 0.659 0.547 0.732 0.761 0.566 0.682 0.750 0.656

D09 D10 D11 D12 D13 D14 D15 D16

Level Set 0.774 0.709 0.728 0.662 0.747 0.715 0.771 0.781

Graph Cut 0.726 0.743 0.729 0.636 0.706 0.841 0.706 0.853

Classifier 0.711 0.691 0.749 0.666 0.610 0.680 0.673 0.623
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