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Abstract—
Purpose Many virtual and augmented reality systems have been
proposed to support renal interventions. This paper reviews such
systems employed in the treatment of renal cell carcinoma and
renal stones.
Methods A systematic literature search was performed. Inclusion
criteria were virtual and augmented reality systems for radical or
partial nephrectomy and renal stone treatment, excluding systems
solely developed or evaluated for training purposes.
Results In total, 52 research papers were identified and analyzed.
Most of the identified literature (87%) deals with systems for
renal cell carcinoma treatment. Forty-four percent of the systems
have already been employed in clinical practice, but only 20% in
studies with ten or more patients. Main challenges remaining for
future research include the consideration of organ movement and
deformation, human factor issues, and the conduction of large
clinical studies.
Conclusion Augmented and virtual reality systems have the
potential to improve safety and outcomes of renal interventions.
In the last ten years, many technical advances have led to
more sophisticated systems, which are already applied in clinical
practice. Further research is required to cope with current
limitations of virtual and augmented reality assistance in clinical
environments.

Index Terms—Augmented Reality, Virtual Reality, Nephrec-
tomy, Renal Interventions, Image-Guided Surgery

I. INTRODUCTION

THE kidney is an important organ of the urinary system
controlling the body’s fluid and electrolyte balance and

eliminating waste products. It can be affected by diseases such
as nephrolithiasis and renal cell carcinoma (RCC), which are
briefly described in the following.

A. Renal Diseases and Interventions

Nephrolithiasis, the formation of renal stones, is a common
disease affecting about 5-10 % of the population worldwide
with a prevalence of 9 % in the United States in 2012 [1], [2].
A second important pathology of the kidney is RCC. It is the
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ninth most common cancer, with 61,560 estimated new cases
in the United States in 2015 [3], [4].

Treatment options include radical nephrectomy (RN), par-
tial nephrectomy (PN) or ablation techniques, such as ra-
dio frequency ablation (RFA) [5]. For small to medium-
sized renal tumors, nephron-sparing tumor resection is rec-
ommended [6] due to comparable oncological outcome while
better preserving renal function compared to RŅ [7], [8].
Ablation techniques are considered as a treatment option for
patients who are not eligible for resection techniques [9],
[5]. Minimally invasive approaches have several advantages
in comparison to open surgeries, such as shorter hospital stay
and faster recovery. They are also of importance for renal
stone and RCC treatment. Non-invasive or minimally invasive
approaches are already standard in treatment of nephrolithi-
asis, and minimally invasive therapies are gaining increasing
importance in RCC treatments. A laparoscopic approach is
already considered the standard of care for RN [10]. Laparo-
scopic partial nephrectomy (LPN) and robot-assisted partial
nephrectomy (RAPN) have gained increasing importance for
nephron-sparing surgery during the last years (especially for
PN) [11] since the first LPN in 1991 [12], [13]. Compared
to open partial nephrectomy (OPN), LPN is associated with
decreased operative blood loss and shorter hospital stays [14].

In minimally invasive procedures, the direct view of the
operation field is replaced by information from imaging sys-
tems, such as intraoperative ultrasound (IOUS), fluoroscopy,
or endoscopic video. This change is generally accompanied
by challenges due to a reduced haptic feedback and a limited
field of view. Particularly in LPN, the tumor detection by
IOUS is challenging, especially for intraparenchymal tumors
or isoechoic tissue [15]. To reduce bleeding and achieve a clear
(endoscopic) view during tumor resection, renal or higher-
order arteries are clamped, leading to warm ischemia, which
is related to postoperative renal impairment [16]. Therefore,
two important aims consist of reducing the warm ischemic
time or to perform tumor resection without hilar clamping.
In percutaneous nephrolithotomy (PCNL), difficulties include
finding a trajectory to the target stone while avoiding risk
structures. In order to assist the surgeon in performing safe
renal interventions, several computer assistance systems have
been developed addressing these challenges. Another aspect,
contributing to the role of computer assistance, is the shift for
procedures, such as PCNL from interventional radiologists to
urologists. This leads to requirements of additional training
and assistance for image-guided surgeries [17], [18].
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B. Virtual and Augmented Reality

Many computer assistance systems rely on virtual reality
(VR) or augmented reality (AR) approaches. This review
aims to provide a comparative and critical overview of those
systems that are used for the renal interventions described
above. The focus on these interventions results from the
predominance of these areas for VR/AR applications and is
examined further in the discussion section of this paper.
VR is described as “the use of computer modeling and simu-
lation that enables a person to interact with an artificial three-
dimensional (3D) visual or other sensory environment” [19].
Whereas VR therefore relies on purely virtual environments,
AR “allows the user to see the real world, with virtual objects
superimposed upon or composited with the real world” [20].
Both aspects are used for clinical purposes by enabling the pre-
sentation of additional information pre- and intraoperatively.
Preim and Botha [21] provide a comprehensive overview of
medical VR/AR displays. The scope of this review covers
VR and AR systems for support in renal interventions with
focus on PN, RN, PCNL and lithotripsy. VR is in this
context considered as a virtual scene (e.g. virtual 3D model)
that can be manipulated by human-computer interaction. The
immersive character, which is further described in [19] as “VR
applications immerse the user in a computer-generated envi-
ronment that simulates reality through the use of interactive
devices [...] worn as goggles, headsets, gloves, or body suits”,
is not considered essential. Here, VR systems can therefore be
either “simple” 3D planning models of the kidney or systems
that can be used to perform complete virtual surgeries.

C. Previous Work

VR and AR systems play an important role in assistance for
renal interventions, the former especially for precise planning,
the latter intraoperatively to provide enhanced 3D orienta-
tion. Several reviews have been published previously dealing
with AR support for urological interventions. Some of them
cover general advances in image-guided urological surgery,
including, but not focusing on, AR approaches for kidney
interventions [22], [23], [24]. Najmaei et al. [25] discuss AR
for hepatic and renal interventions encompassing laparoscopic
and percutaneous treatments. Rassweiler et al. [26] review
European projects dealing with AR for navigation in prostate
and kidney interventions. Nakamoto et al. [27] present AR
approaches in abdominal and urological laparoscopic surgery
covering methods applied in PN surgeries. Nicolau et al. [28]
review different aspects of AR for laparoscopic surgical on-
cology, such as RCC treatment. A review describing different
approaches for AR in PN with respect to registration and track-
ing in detail is given by Hughes-Hallett et al. [29]. Reviews
dealing with VR applications in the context of laparoscopic
or percutaneous interventions address VR used in training
systems rather than for planning support [18], [30].

In this review, a search strategy was selected including
VR and AR systems. In contrast to the previously published
reviews, the systems are discussed both with respect to VR and
AR. Furthermore, also technical approaches that have not been

applied in clinical practice yet but are promising for future VR
or AR systems are also included.

The subsequent parts of this paper are structured as follows:
First, the literature search strategy together with its inclusion
criteria is described. Second, the results are presented by
giving an overview of systems for assistance in RN, PN,
and renal stone treatment as well as of approaches dealing
with challenges of segmentation and registration. In addition,
the current state of clinical evaluation and studies dealing
with human factors concerning AR are described. Finally, the
results of the literature review are discussed.

II. METHODS

In the following, the literature search strategy together with
the inclusion and exclusion criteria will be presented.

A. Search Strategy

A systematic literature search spanning from January 2005
to June 2016 was conducted using the database PubMed.
PRISMA guidelines were followed [31]. The search-term
(((((“computers”[MeSH Terms] OR “computers”[All Fields]
OR “computer”[All Fields]) AND assisted [All Fields]) OR
((augmented OR virtual) AND reality))) AND ((“nephrec-
tomy”[MeSH Terms] OR “nephrectomy” [All Fields]) OR
(“lithotripsy” [MeSH Terms] OR “lithotripsy” [All Fields])
OR nephrolithotomy[All Fields])) was applied.

Based on the titles and abstracts, literature was selected
and reviewed in detail by two reviewers (F.D., J.H.). Cross-
references and further literature from an excerpt of a Google
Scholar search, using the search-term ((“computer assisted”
OR “augmented reality” OR “virtual reality”) AND (nephrec-
tomy OR nephrolithotomy OR lithotripsy)), were additionally
included depending on their relevance for the review’s pur-
pose.

B. Inclusion Criteria

Inclusion criteria were VR/AR systems used for assistance
in planning and/or intraoperatively for guidance in one of the
three defined kidney interventions:

• nephrectomy or partial nephrectomy,
• intracorporal lithotripsy, and
• percutaneous nephrolithotomy (PCNL).
Literature dealing with systems solely utilized for training

purposes or their evaluation was excluded. Furthermore, sys-
tems and segmentation or registration approaches designed for
more broader purposes (e.g. laparoscopic interventions) were
included when their evaluation was performed on data from
kidney interventions. The selected literature was restricted to
English language. Reviews and letters were excluded. Further-
more, only literature published from January 2005 to July 2016
was considered.

III. RESULTS

The results of the search strategy are summarized in Fig. 1.
A total of 319 references resulted from the PubMed database
search using the previously defined search term. From these,
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Fig. 1. Literature search strategy: A literature search was performed in
PubMed and extended by an excerpt of Google Scholar results. After title and
abstract screening, full texts of the selected literature were analyzed. Based
on the defined inclusion criteria, 52 papers were selected.

Fig. 2. Overview of identified systems and methods from the literature.

43 were selected for detailed screening and enhanced by 26
additional publications from cross-references including results
from the Google Scholar search. Finally, 52 references were
chosen as a basis for this review. Figure 2 provides an
overview of the topics that were addressed by the identified
literature.

A. Clinical Objectives

An overview of systems for surgical treatment of RCC and
renal stones is given in Table I and Table II, respectively. In
general, the clinical objective of VR/AR systems for kidney
interventions is the improvement of patient outcome. The fol-
lowing, more specific objectives are addressed in the literature,
including VR/AR assistance for:

• precise tumor resection [32], [33], [34], [35],

Fig. 3. Scheme of approach for augmentation of endoscopic video by tumor
margins incorporating uncertainties from segmentation [32].

• safe renal clamping [36], [37],
• selective arterial clamping [38], [39], [40], [41], [42], and
• avoidance of postoperative leakage due to open urinary

tract [43],

in the case of RCC treatment, and

• needle trajectory guidance [44], [45], [46], [47], [48],
[49], [50]

for renal stone treatment. These clinical objectives are ad-
dressed both by VR and AR systems. They are described
as follows, ordered by the clinical objectives. In addition,
research papers not addressing one of these specific clinical
objectives are presented subsequently.

1) Precise Tumor Resection: Precise tumor resection
achieving negative resection margins while preserving a maxi-
mum of healthy tissue is one important step in PN. It requires
an exact tumor delineation. Several AR systems directly ad-
dress this challenging step.

Three systems are based on the registration of preoperative
CT data with data from endoscopic videos. Ukimura and
Gill [35] visualize information from preoperative CT on the
endoscopic video by superimposing tumor margins using
a color overlay that encodes the distance from the tumor.
The accuracy is described as sufficient without presenting
information on the evaluation procedure of the system. Amir-
Khalili et al. [32] propose a system for enhancing stereo
endoscopic images by overlay of tumor margins. Different
contours encode information about their uncertainties resulting
from segmentation. Their approach is based on semi-manual
probabilistic segmentation of kidney and tumor boundaries
from preoperative CT data (see Fig. 3).

For registration of the segmentation result, semi-automatic
rigid registration combined with local scaling followed by
a non-linear B-spline registration step is applied. In their
work, different visualization methods were evaluated by urol-
ogists using lamb kidneys. The most appealing one provides
information about the tumor boundary of highest probability
together with the local confidence by using a color-coded con-
tour (see Fig. 4). Finally, Chen et al. [33] generate a 3D model
from preoperative CT images for precise planning, including
morphometry and surgery simulation. Intraoperatively, the 3D
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TABLE I
VR/AR SYSTEMS FOR ASSISTANCE OF NEPHRECTOMY, I.E. RADICAL NEPHRECTOMY (RN) AND PARTIAL NEPHRECTOMY (PN), ORDERED BY CLINICAL

OBJECTIVES. IDENTIFIED PROCEDURES ADDRESSED BY THE SYSTEMS INCLUDE OPEN PARTIAL NEPHRECTOMY (OPN), LAPAROSCOPIC PARTIAL
NEPHRECTOMY (LPN), ROBOT-ASSISTED PARTIAL NEPHRECTOMY (RAPN) AND LAPAROSCOPIC RADICAL NEPHRECTOMY (LRN).

Procedure Clinical Objective Technical Approach VR/AR Evaluation

Amir-Khalili et al.
2013 [32]

RAPN Precise tumor resection Augmentation of endoscopic view by virtual
tumor margins; visualization of segmenta-
tion uncertainty

AR Ex vivo: lamb kidneys;
alignment error

Chen et al. 2014
[33]

LPN Precise tumor resection for
intrarenal tumors

Augmentation of endoscopic view by 3D
model; manual registration

AR In vivo: 15 patients un-
dergoing LPN

Cheung et al. 2010
[34]

LPN Precise tumor resection Augmentation of stereoscopic endoscopic
view by IOUS image; manual registration
combined with tracking

AR In vitro: phantom
study

Ukimura and Gill
2008 [35]

LPN Precise tumor resection Augmentation of endoscopic view by virtual
tumor margins; color-coded margin zones

AR In vivo: 1 patient

Amir-Khalili et al.
2014 [36]

RAPN Safe renal clamping Highlighting of occluded vessels near renal
hilum in endoscopic video

AR Retrospective:
8 RAPN cases

Amir-Khalili et al.
2015 [37]

RAPN Safe renal clamping Highlighting of occluded vessels near renal
hilum in endoscopic video

AR Retrospective: 15
RAPN cases, clinical
user study

Furukawa et al.
2014 [38]

RAPN Safe selective arterial
clamping

3D model displayed below endoscopic
video on robotic console

VR In vivo: 17 patients un-
dergoing RAPN

Komai et al. 2014
[39]

LPN/
OPN

Safe selective arterial
clamping

3D model for planning and intraoperative
guidance

VR In vivo: 26 patients un-
dergoing PN

Ukimura and Gill
2012 [40]

LPN/
RAPN

Safe selective arterial
clamping

3D model for planning and intraoperative
guidance

VR In vivo: 4 patients un-
dergoing LPN/ RAPN

Wang et al. 2015
[41]

LPN Safe selective arterial
clamping

Augmentation of endoscopic view by 3D
model; manual registration

AR In vivo: 35 patients un-
dergoing LPN, retro-
spective

Isotani et al. 2015
[42]

RAPN Safe selective arterial
clamping

Preoperative simulation of PN and intraop-
erative display of 3D model below endo-
scopic video

VR In vivo: 20 patients un-
dergoing RAPN, retro-
spective

Ueno et al. 2014
[43]

LPN Avoiding postoperative
leakage due to open urinary
tract

3D model with virtual resection plane for
planning

VR Retrospective: 5 pa-
tients undergoing LPN

Makiyama et al.
2012 [51]

LRN/
LPN

Generally precise and safe
PN, especially for patients
with rare anatomical condi-
tions

VR-simulator based on individual patient
computed tomography (CT) data for “re-
hearsal” surgeries

VR In vivo: 13 patients
undergoing LPN/ LRN
and pyeloplasties [52]

Baumhauer et al.
2008 [53]

LPN Generally precise and safe
PN

Augmentation of endoscopic video by 3D
model from preoperative CT; intraoperative
imaging for registration

AR In vitro: porcine kid-
ney model

Teber et al. 2009
[54]

LPN Generally precise and safe
PN

Augmentation of endoscopic video by 3D
model from preoperative CT; in vivo man-
ual registration

AR In vitro: 10 porcine
kidneys; in vivo: 10
patients undergoing
LPN

Nakamura et al.
2010 [55]

LPN,
LRN

Generally precise and safe
PN, RN

Augmentation of endoscopic video by intra-
operatively reconstructed 3D model; manual
registration

AR In vivo: 2 patients un-
dergoing LPN, 3 LRN

Su et al. 2009 [15] RAPN Generally precise and safe
PN

Augmentation of endoscopic video by 3D
model from preoperative CT; manual initial
registation

AR Post-processing of
video data from 2
RAPN

Altamar et al. 2011
[56]

RAPN Generally precise and safe
PN

Registration of endoscopic video with pre-
operative CT; surface-based registration by
manual tracking

AR In vivo: RAPN proce-
dures

Pratt et al. 2015
[57]

RAPN Generally precise and safe
PN

Augmentation of endoscopic video by la-
paroscopic IOUS image; tracking of IOUS
probe

VR In vivo: 1 RAPN

Lasser et al. 2012
[58]

RAPN Generally precise and safe
PN

3D model for planning and display below
endoscopic video on robotic console

VR 10 patients undergoing
RAPN

Hughes-Hallett et
al. 2014 [59]

RAPN Generally precise and safe
PN

3D model for planning and display below
endoscopic video on robotic console

VR In vivo: 5 patients un-
dergoing RAPN
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Fig. 4. AR view of tumor margins on ex vivo lamb kidney. Uncertainty is
encoded into the tumor boundary ranging from certain (green) to uncertain
(red) [32].

model is manually registered with the endoscopic video based
on an accuracy verification with IOUS.

An AR system based on the registration of stereoscopic
endoscope and IOUS images is described by Cheung et al.
[34]. The system is realized by electromagnetically tracking
the IOUS probe and the endoscope. A phantom study demon-
strates the system usability and an improvement in resection
planning times using the fused view.

2) Safe Selective Arterial/Renal Clamping: Besides support
for precise tumor resection, several groups address support
for artery clamping. Artery clamping is performed by clamp-
ing either the renal artery (hilar clamping) or higher-order
vessels supplying tumor-containing segments, i.e., selective
artery clamping, also known as segmental artery clamping
[60], clampless PN [39] or “Zero ischemia” PN [40]. Several
systems have been developed to address challenges related to
artery clamping.

Amir-Khalili et al. [36], [37] use an adapted phase-based
video magnification technique to highlight hidden vessels near
the renal hilum in the endoscopic video. The method was
evaluated retrospectively on videos from RAPN cases, and
the vessels were successfully detected in 13 of 15 cases.
Problems occurred during the automatic segmentation process
when motion of tools was present in the scene. An evaluation
of the effect of the proposed method on the identification of
hidden vessels by surgeons revealed a shorter vessel detection
time for junior surgeons (no change for experienced surgeons),
whereas the detection rate was only minimally affected both in
the cases of junior and experienced surgeons. Surgeons used
the tool mainly to confirm their own vessel localization, which
they reported as beneficial.

While Amir-Khalili et al. address difficulties occurring dur-
ing hilar dissection and renal artery clamping, several systems
have been developed with the aim to assist in identifying
targeted tertiary and high-order arterial branches for selective
artery clamping. 3D models with extracted tumor and target
vessels are used for preoperative planning including surgery
simulations [39], [41], [42] and intraoperative guidance by
displaying them below the endoscopic view on the console of
the DaVinci robotic system using the system’s TilePro function
[38], [42] or on a separate screen during LPN [39], [40].

Fig. 5. View of VR environment of in simulator for “rehearsal” laparoscopic
renal surgery (here: hemostasis training) [51].

Manual registration of the 3D model with the 3D endoscopic
video is performed intraoperatively to generate a fused view
supporting the identification of the target vessels [41].

3) Avoiding Postoperative Urine Leakage: One potential
complication occurring after PN is postoperative urine leakage
due to an open urinary tract. Ueno et al. [43] address this
problem with a VR system for predicting the presence of
an open urinary tract. A virtual resection plane is created
in a 3D model reconstructed from preoperative CT images.
The application of resection planes for different amounts of
resection margins is used to predict whether and at which mar-
gin the urinary tract would be open. Retrospective evaluation
on five LPN cases showed that the predicted and the actual
intraoperative outcome were consistent in all but one patient.
The method of preoperative surgical simulation proposed by
Isotani et al. [42] can further be used for predicting an opening
of the collective system. Here, the preoperative prediction
was correct in 19 out of 20 RAPN cases. Postoperative urine
leakage rates are reported as 2-2.4 % for LPN and 1.6 % for
RAPN [61], [62]. The studies by Ueno and Isotani show that
opening the urinary tract can be predicted by the presented
technologies. Whether the actual risk of postoperative leakage
can be not only predicted, but also reduced by those systems,
necessitates further evidence.

4) Generally Precise and Safe Partial Nephrectomy: To
assist preoperative planning of nephron-sparing surgeries for
patients with rare anatomical conditions, Makiyama et al. [51]
developed a VR simulator based on individual patient CT
data enabling virtual “rehearsal” surgeries prior to the actual
intervention. For the surgery simulations, a deformation model
is applied on a tetrahedral data set generated by a finite element
method (FEM) from the semi-automatically segmented CT
data. A haptic device is incorporated in the system to generate
haptic feedback. Fig. 5 visualizes part of the VR environment.

In addition, other AR systems without a specific clinical
aim are described. Baumhauer et al. [53] propose a navigation
system for LPN. Segmented data from preoperative CT images
are displayed as an AR overlay on the endoscopic video.
Deformation of the kidney is taken into account by the use
of custom-designed navigation aids inserted into kidney and
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intraoperative CT cone beam imaging. The same principle is
applied by Teber et al. [54]. Fully automatic registration is re-
alized in the in vitro experiments, whereas manual navigation
by orientation based on anatomic landmarks is used for the
in vivo cases. Nakamura et al. [55] enhance the endoscopic
video by manual fusion with intraoperatively reconstructed
3D models. Su et al. [15] impose 3D kidney models onto
endoscopic videos during RAPN. For augmentation, the 3D
kidney model is imported onto the endoscopic video segment
and manually calibrated to achieve visual fit. A surface-based
tracking technique allows for subsequent automatic tracking of
coarse movements to automatically adjust the overlay. Organ
deformation is not incorporated. Altamar et al. [56] augment
the endoscopic view with surfaces generated from preoperative
CT in RAPN by surface-based registration. Determination
of the surface points on the kidney is realized by manually
scanning the kidney surface with a robotic instrument during
surgery and simultaneously tracking its position. A different
AR approach is presented by Pratt et al. [57]. Here, the
endoscopic video is augmented by the image obtained from
laparoscopic IOUS. Optical markers attached to the laparo-
scopic IOUS probe are used for the registration between stereo
endoscope and IOUS image.

Similar to Furukawa et al. [38], Hughes-Hallett et al. [59]
and Lasser et al. [58] display a 3D model generated from
preoperative CT below the endoscopic video on a DaVinci
robotic console using the TilePro function of the DaVinci
system. Prior to surgery, extensive planning including virtual
manipulation and removal of target structures is performed
based on the 3D model [58]. Intraoperative manipulation of
the model is possible via a tablet computer attached near
the console, and the manipulated image is replicated on the
console view [59].

5) Safe Trajectory Finding for Renal Stone Treatment:
Whereas the treatment of RCC is addressed by many VR/ AR
systems, six such systems were identified for renal stone
treatment (cf. Table II). They aim to assist in safe trajectory
finding.

Mozer et al. [44] perform surface-based registration of 3D
models from preoperative CT with IOUS for intraoperative
needle guidance. Segmentation of the kidney from the IOUS
data is performed manually and both the IOUS probe and the
needle are tracked optically. In a later study [45], this method
is used to superimpose the puncture tract from the IOUS
image on the fluoroscopic image obtained at the beginning of
the procedure. Li et al. [46] use a 3D model generated from
preoperative magnetic resonance imaging (MRI) for trajectory
planning and intraoperative augmentation of real-time IOUS.
The needle and the IOUS probe are optically tracked and a
virtual model of the needle is displayed in the fused image.
To take organ deformation due to breathing into account,
only IOUS slices at maximum exhalation obtained through an
optical tracking-based respiratory gating technique are used for
overlay of the 3D model on the IOUS image and subsequent
puncture. Accuracy evaluation with four volunteers resulted in
a mean target registration error (TRE) of 3.53 mm.

Another navigation system based on optical tracking is
introduced by Oliveira-Santos et al. [47]. Unlike the previously

Fig. 6. IPad-assisted marker-based navigation of percutaneous access to the
kidney. Figure adapted based on [48].

described systems, the preoperative CT scan is registered to
the patient using fiducial markers, and not based on intraopera-
tively obtained image data. Li et al. [49] address the challenge
of obtaining an appropriate access to the renal stones in the
case of complex anatomical or pathological conditions. Precise
preoperative planning based on a 3D model reconstructed
from preoperative CT images is supported by incorporating
a virtual puncture needle into the model. Intraoperatively, the
model is used to identify the planned insertion point based
on anatomical landmarks and provide detailed anatomical
information during the lithotripsy procedure.

An AR system described first by Rassweiler et al. [48] and
later in more detail in [50] is used to support the percutaneous
access by overlaying a 3D model onto the image from a tablet
camera (see Fig. 6).

Registration is based on fiducial markers and camera cal-
ibration. The conducted phantom study demonstrated a de-
crease in puncture time and radiation exposure for urology
trainees in comparison to other modalities, i.e., US and fluo-
roscopy without AR assistance. However, no major improve-
ments were found for experienced urologists. Evaluation on
a phantom revealed a decreased puncture time and radiation
exposure for the urology trainee in comparison to other
image modalities, but no major improvements in case of an
experienced urologist.

B. Intraoperative Image Segmentation

Segmentation of structures from intraoperatively acquired
images is one crucial step for many VR/AR guidance sys-
tems, e.g., it is the basis for non-fiducial based registration
techniques. In the literature, intraoperative segmentation from
IOUS and endoscopic images is described. An overview of
these approaches is given in Table III .

Segmentation from IOUS images is challenging due to
the appearance of attenuation, speckle, shadows and signal
dropout [70]. Three methods dealing with segmentation from
IOUS images were identified in the literature. First, Xie et
al. [63] developed a texture and shape prior-based method for
segmentation of the kidney in two-dimensional (2D) IOUS
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TABLE II
VR/AR SYSTEMS FOR ASSISTANCE OF RENAL STONE TREATMENT, I.E. PERCUTANEOUS NEPHROLITHOTOMY (PCNL), AS NO SYSTEMS FOR

LITHOTRIPSY WERE IDENTIFIED IN THE LITERATURE.

Procedure Clinical Objective Technical Approach VR/AR Evaluation

Mozer et al. 2005
[44]

PCNL Needle trajectory planning
and guidance

3D model for preoperative planning and
intraoperative guidance; display of virtual
needle; optical tracking

VR Ex vivo: phantom
study

Mozer et al. 2007
[45]

PCNL Needle trajectory guidance Augmentation of fluoroscopic image by
puncture tract obtained from IOUS needle
guide; optical tracking

AR Ex vivo: phantom
study; in vivo: 1
patient

Li et al. 2012 [46] PCNL Needle trajectory guidance Augmentation of IOUS image by 3D model
from preoperative MRI; respiratory gating

AR Ex vivo: phantom
study

Oliveira-Santos
et al. 2010 [47]

PCNL Needle trajectory guidance Augmentation of 3D model from preopera-
tive CT by puncture tract; optical tracking

AR In vitro: phantom
study

Li et al. 2013 [49] PCNL Needle trajectory planning
and guidance

3D model for preoperative planning and
intraoperative guidance; display of virtual
needle

VR In vivo: 5 patients
with complex
stones undergoing
PCNL

Rassweiler et al.
2012 [48], Müller
et al. 2013 [50]

PCNL Needle trajectory guidance Augmentation of tablet camera view by
3D planning model from preoperative CT;
marker-based registration

AR in vivo: 2 patients;
ex vivo: phantom
study

TABLE III
LITERATURE DEALING WITH INTRAOPERATIVE IMAGE SEGMENTATION FOR VR/AR SYSTEMS ORDERED BY IMAGE MODALITY.

Modality Objective Method

Xie et al. 2005 [63] IOUS Introduction of kidney segmentation
method

Semi-automatic approach; texture and shape prior based
method

Ahmad et al. 2006
[64]

IOUS Introduction of kidney tumor segmenta-
tion method

Semi-automatic approach; slice-based segmentation using
tracked IOUS probe; discrete dynamic contour method

Yang et al. 2012 [65] IOUS Introduction of kidney segmentation
method

Automatic approach; non-local total variation (NLTV)
image denoising, distance regularized level set evolution
(DRLSE) and shape prior

Nosrati et al. 2014
[66]

Laparoscopic
video

Introduction of kidney/tumor segmenta-
tion method given its preoperative 3D
model

Semi-automatic approach; mathematical model including
priors about camera motion and kidney shapes

Nosrati et al. 2015
[67]

Laparoscopic
video

Introduction of kidney/tumor segmenta-
tion method given its preoperative 3D
model

Automatic approach; mathematical model including priors
about camera motion and calibration corrections and kid-
ney shapes

Nosrati et al. 2016
[68]

Laparoscopic
video

Introduction of kidney/tumor and vessel
segmentation method given its preopera-
tive 3D model

Combination of method proposed in [37] with visual cue
analysis and patient-specific deformation model

Rosa et al. 2011 [69] Laparoscopic
video

Introduction of segmentation method for
calculi in urinary tract

Semi-automatic approach; region growing algorithm; seed
point definition using centroid of a laser spot

images. They propose a two-sided convolution strategy for
texture feature extraction combined with a deformable shape
model constructed from a data set of training shapes. Seg-
mentation is realized by an iterative procedure of updating
parameters of the initially manually placed segmenting curve
to minimize a texture-based energy function. Second, Ahmad
et al. [64] describe a method for the segmentation of the 3D
tumor surface from 2D IOUS. The surface is obtained by
sweeping around the tumor with an optically tracked IOUS
probe and applying a discrete dynamic contour algorithm for
segmentation after initial manual selection of tumor bound-
aries. In a modified approach, relying on the assumption
of a spherical or ovate tumor, a so-called “guide surface”
is generated to support the generation of seed contours. A
comparison of the two methods revealed more precise seg-
mentation results for the unguided approach in comparison to a
manually segmented gold standard. However, at the same time
more user interaction is required. Third, Yang et al. [65] apply

a distance regularized level set evolution (DRLSE) method
[71] after nonlocal total variation (NLTV) denoising for kidney
segmentation. Subsequent post-processing is based on shape
priors obtained from a principal component analysis performed
on a set of training shapes, and finally, if quantitative measures
of the segmentation are below a defined threshold, an align-
ment model is applied to increase the shape space and yield
higher accuracy in segmentation.

Besides methods for IOUS image segmentation, the seg-
mentation of endoscopic images is important to enhance
VR/AR systems. In this context, four relevant research papers
were identified. Nosrati et al. [66] propose a method for
the segmentation of an object in a 2D endoscopic image
given its preoperative 3D model. After a manual alignment
of the preoperative model with the 2D image, subsequent
registration is realized by taking information on camera motion
into account. In RAPN, the latter can be obtained from
information about the position of the robotic arm. Non-rigid
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Fig. 7. Examples of shape variations of a kidney and its two tumors after
deformations used for segmentation in [67].

deformation is considered using information from a catalog of
3D deformation shapes (see Fig. 7).

A comparison to other segmentation algorithms demon-
strates that incorporation of priors yields a more robust seg-
mentation, e.g., in case of occlusions caused by instruments. In
a further extension [67], the correction of camera calibration
parameters (due to focus or zoom) is included in the method.
In order to segment kidney and tumor tissue as well as the
supplying vasculature, a combination of the method introduced
in [37] and an extension of the approach presented in [67] is
proposed [68]. Here, an energy function is minimized based
on visual cues in the endoscopic video as well as a phase-
based pulsation analysis. For segmentation of the structures of
interest, information about patient-specific tissue properties is
further incoporated via a deformation model used to generate
patient-specific shape-models from preoperative 3D data. Fig.
8 illustrates this method.
It should be remarked that these approaches [66], [67], [68]
demonstrate a natural overlap between the objectives of intra-
operative image segmentation on the one hand, and registration
and deformation handling on the other hand. Here, registration
of a preoperative model with the intraoperative image is used
for intraoperative image segmentation.

Finally, Rosa et al. [69] describe a method for the segmen-
tation of renal stones in the endoscopic video for immediate
support during lithotripsy. In their approach, they make use
of the standard clinical situation that prior to lithotripsy a
visible laser light is pointed on the renal stone for orientation
of the laser beam subsequently used for stone destruction. The
centroid of the laser spot is used as a seed for the applied
region growing algorithm. During evaluation of the method on
videos from ureteroscopy, 94% of the images were segmented
correctly.

C. Intraoperative Registration and Deformation Handling

Accurate and robust registration is crucial for VR/AR
systems, but can be difficult due to continuous organ move-
ment and non-rigid organ deformation during surgery. Several
technical approaches for intraoperative image registration and
deformation handling are proposed (see Table IV). Constantly
repeated manual image registration is computationally cheap
but requires a lot of user interaction and cognitive effort.
For example, several groups [33], [41], [54], [55] propose
to align 3D planning models based on preoperative CT with
laparoscopic video images while using anatomic landmarks
for orientation. These systems require an additional surgical

assistant performing the image registration [33], [41] or ad-
ditional effort of the surgeon [54], [55]. Constantly repeated
manual image registration techniques are mainly proposed in
clinical studies [33], [41], [54], [55] because they are easy to
implement and robust.

Furthermore, automatic or semi-automatic registration tech-
niques are proposed to reduce interaction time during surgery.
Baumhauer et al. [53] use real-time C-arm CT imaging com-
bined with fiducials inserted into the target organ for defor-
mation tracking and registration of the preoperative planning
with the actual patient anatomy.

A less invasive approach consists in the implementation of
feature-based tracking methods. Benincasa et al. [72] evaluate
the performance of surface-based registration on different
endoscopic views. Registration is performed using a rigid it-
erative closest point (ICP) algorithm [84]. The authors deduce
that approximately 28% of the kidney surface is required to
perform robust registration. Besides the amount of the visible
surface, also the part of the kidney being visible has an
influence on the robustness on the registration.

Ong et al. [73] propose a method of surface reconstruction
for surface-based registration by using a holographic cono-
scope. Here, a 3D point cloud is obtained by moving an
optically tracked conoscope across the surface. The video of
of the endoscopic camera is subsequently used for texture
mapping of this point cloud. An evaluation of this method on
ex vivo porcine and human kidneys revealed a submillimetric
accuracy as well as an improvement of accuracy with lower
conoscope scanning speed. In contrast, the scan line density
had no signifcant influence on the registration error determined
by the use of fiducials.

An approach for registration of preoperative CT with la-
paroscopic IOUS images is described by Estepar et al. [74].
Here, a phase-correlation based approach is chosen with the
aim of improving registration results when small shifts from
initial registrations occur, especially out-of-plane alignment.
The proposed method uses edge information between tissues
with different acoustic properties and CT densities. An in-
herent limitation is the requirement of sufficient structural
information in the IOUS image. The authors therefore propose
for future work the development of an automatic method for
frame selection. Evaluation on a phantom yields a root mean
square error of less than 2.0 mm; registration is possible within
a few seconds.

Edgcumbe et al. [75] introduce a miniaturized projector for
intraoperative surface reconstruction, identification of tissue
motion and augmentation of the surgical field. For surface re-
construction using a stereo laparoscope, the surface is scanned
with a projected checkerboard pattern from different orien-
tations and reconstructed by means of stereo triangulation.
In case of a mono laparoscope, the projector is additionally
visually tracked with the endoscope to determine its position
for subsequent triangulation with the projector and endoscopic
camera. When comparing both approaches in an in vivo
porcine model, higher accuracies were achieved with the latter
method. Furthermore, detection and visualization of surface
motion from underlying vessels measured by visually tracking
a projected checkerboard is demonstrated for the carotid artery,
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TABLE IV
REGISTRATION TECHNIQUES FOR VR/AR SYSTEMS ORDERED BY TECHNICAL APPROACH (MANUAL REGISTRATION VS (SEMI-)AUTOMATIC

REGISTRATION), ADDRESSING RADICAL NEPHRECTOMY (RN) AND PARTIAL NEPHRECTOMY (PN), I.E. LAPAROSCOPIC PARTIAL NEPHRECTOMY (LPN)
AND OPEN PARTIAL NEPHRECTOMY (OPN). IF NOT STATED OTHERWISE, CT REFERS TO PREOPERATIVE CT.

Procedure Modalities Objective Method Evaluation

Teber et al. 2009
[54]

LPN Laparoscopic
video, CT

Clinical evaluation of an AR-
based navigation system

Intraoperative manual image regis-
tration by surgical assistant; optical
tracking of fiducial on the kidney
surface

In vitro: porcine
kidneys; in vivo: 10
patients undergoing
LPN

Nakamura et al.
2010 [55]

LPN,
LRN

Laparoscopic
video, CT

Evaluation of planning system
(VR); clinical evaluation of AR
navigation

Intraoperative manual image reg-
istration by surgeon, no tracking
system used

In vivo: 2 patients un-
dergoing LPN, 3 LRN

Chen et al. 2014
[33]

LPN Laparoscopic
video, CT

Evaluation of planning system
(VR); clinical evaluation of AR
navigation

Intraoperative manual image reg-
istration by surgical assistant; no
tracking system used

In vivo: 15 patients
undergoing LPN

Wang et al. 2015
[41]

LPN Laparoscopic
video, CT

Evaluation of planning system
(VR); clinical evaluation of AR
navigation

Intraoperative manual image reg-
istration by surgical assistant, no
tracking system used

In vivo: 35 patients
undergoing LPN

Baumhauer et al.
2008 [53]

LPN Intraoperative
C-Arm CT, CT

Introduction and evaluation of
a navigation system for kidney
interventions

Use of custom-designed navigation
aids; intraoperative CT is used for
registration with preoperative CT
images

In vitro: simulated
data; in vivo: 3
porcine kidneys

Benincasa et al.
2008 [72]

LPN,
OPN

Laparoscopic
video, CT

Optimization of surface-based
registration

Iterative closest point algorithm;
determination of required surface
fraction

Laboratory study on
phantom

Ong et al. 2016
[73]

PN, RN Laparoscopic
video

Surface extraction for intraop-
erative surface-based registra-
tion

Texture-mapping of a surface ob-
tained by a conoscope using a la-
paroscopic camera

Ex vivo: phantom,
porcine and human
kidneys

Estepar et al.
2009 [74]

LPN IOUS, CT Improvement of registration for
small shifts from the initial reg-
istration.

Phase correlation technique Laboratory study on
phantom

Edgcumbe et al.
2015 [75]

LPN Laparoscopic
video stream

Surface reconstruction for
surface-based registration

Use of miniaturized projector for
intraoperative surface reconstruc-
tion and AR visualization

Ex vivo: porcine kid-
neys; in vivo: porcine
model

Kingma et al.
2011 [76]

PN, RN IOUS, CT Optimization of the initializa-
tion of feature-based registra-
tion

Fiducial pad for automatic initial
rigid registration

Laboratory study on
phantom

Schneider et al.
2016 [77]

LPN,
RAPN

IOUS, CT Registration of IOUS with CT,
integration into RAPN

Custom-designed intraoperative
“pick-up” ultrasound transducer,
tracking of probe

Laboratory study on
phantom

Puerto-Souza
et al. 2011 [78]

LPN Laparoscopic
video, CT

Introduction of feature-
matching algorithm

Adaptive multi-affine algorithm
based on clustering

Retrospective study:
50 image-pairs from 3
LPN

Puerto-Souza
et al. 2013 [79]

LPN Laparoscopic
video, CT

Optimization of feature-
matching regarding speed,
accuracy, and robustness

Hierarchical multi-affine algorithm Retrospective study:
100 images from 6
LPN

Puerto-Souza
et al. 2014 [80]

LPN Laparoscopic
video, CT

Optimization of feature-
matching regarding long-term
AR

Sliding-window weighted least-
squares criterion that allows to re-
cover the position of anchor points

Retrospective study: 2
video sequences of
LPN

Yip et al. 2012
[81]

RAPN Laparoscopic
video stream

Feature-based tracking and reg-
istration update for stereo la-
paroscopy

Calculation of rigid transformation
based on surface feature assuming
an initial registration

In vitro: data from in
vivo porcine model,
patient data from
RAPN

Wild et al. 2016
[82]

LPN,
LRN

Laparoscopic
video, CT

Improvement of intraoperative
registration

Use of metabolizable fluorescent
markers as fiducials for inside-out
tracking

Ex vivo: porcine liver
and kidney

Glisson et al.
2011 [83]

OPN Laparoscopic
video, CT

Improvement of intraoperative
re-registration

Use of “virtual fiducials” for point-
based intraoperative re-registration

In vivo: three OPN
cases
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Fig. 8. Illustration of method for image guidance by augmentation of endoscopic video with kidney, tumor and vessel boundaries. Figure adapted based on
[68].

indicating a possible AR application of the projector.
Kingma et al. [76] address the problem of required proper

(manual) initialization of many feature-based methods with
regard to registration of preoperative CT images with laparo-
scopic IOUS. They design a pad based on polyvinyl chloride
with integrated fiducials that is attached to the patient during
preoperative scanning and intervention, which can be used
for automatic initial rigid registration of the CT and the
IOUS image. Clinical evaluation on three patients undergoing
nephrectomy reveals a TRE up to 18.72 mm (3.3 mm in a
phantom study), which is considered as sufficient for initial-
ization of feature-based algorithms.

Also with regard to registration of preoperative CT images
with laparoscopic IOUS, Schneider et al. [77] introduce an
intraoperative “pick-up” ultrasound transducer, which can be
used for RAPN without requiring a dedicated port or robotic
tool change. For intraoperative registration, the transducer is
tracked by using robotic kinematics, an electromagnetic (EM)
tracking system, or optical tracking with the stereo endoscope.
Tracking by robotic kinematics is associated with the smallest
average TRE on a ultrasound vessel phantom.

Puerto-Souza et al. [78], [79], [80] developed a method for
robust and long-term AR overlay of 3D models generated from
CT data on monocular endoscopic video (with or without
camera calibration) based on feature matching algorithms.
Related to high computational effort of their initial adaptive
multi-affine algorithm [78], a computationally more efficient
and robust hierarchical multi-affine algorithm (HMA) [79] is
proposed and evaluated. HMA hierarchically clusters initial
appearance-based feature matches and iteratively removes
incorrect matches by estimating affine transformations for
each cluster. This approach, being evaluated by comparison
of performance with other algorithms [78], [85], [86] on data-
sets from laboratory and LPN videos, allows for fast and robust
feature matching, also after temporally lost feature matches
due to visual occlusion. The algorithm is applied in [80] for
the implementation of a tracking recovery phase for cases

when the algorithm loses tracked features. Based on the feature
tracking, anchor points for the projection of the 3D model
on the endoscopic video are updated and the augmentation is
updated for each subsequent video frame. Comparison of the
performance of the two projection methods, with or without
incorporation of camera calibration, on videos from LPN to
another algorithm yielded higher accuracy for the proposed
algorithms and the most accurate overlay for the method,
including camera calibration parameters.

Yip et al. [81] use a combination of a modified version of
the CenSuRE (Center Surround Extremas for Realtime Feature
Detection and Matching) feature detector [87] and the binary
robust independent elementary feature (BRIEF) descriptor [88]
for tracking of tissue in stereo endoscope video. In contrast
to [80], effects of instrument occlusions or shading are not
handled by their method.

Because of the difficulties associated with the use of
implanted fiducials for intraoperative registration, Wild et
al. [82] suggest the application of metabolizable fluorescent
markers for registration of a preoperative 3D model with the
endoscopic video in laparoscopic procedures. A comparison of
this method with needle-shaped implanted fiducials on porcine
kidneys revealed an equal number of successfully processed
frames (defined as frames where all markers were detected
and the fiducial visualization error (FVE) was smaller than
25 pixels) for both approaches. Furthermore, the robustness
of the proposed method was assessed on porcine livers where
blood, tissue or smoke (partially) occluded the fiducials. In
all three set-ups, the use of fluorescent markers resulted in a
considerably better detection of the fiducials.

A similar approach with respect to the extent of invasiveness
of the use of fiducials is presented by Glisson et al. [83] for
OPN. After an initial surface-based registration of the kidney
surface obtained from laser range scanning with a preoperative
model, dots (“virtual fiducials”) are placed on the kidney
and used for subsequent point-based re-registration during the
procedure.
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A comprehensive review and evaluation of different surface
reconstruction methods for laparoscopic procedures can be
found in [89].

A major difficulty encountered with registration is the
permanent deformation of organs and instruments, resulting
in insufficiently accurate registration. Deformation models
addressing various origins of deformation have been proposed
to enable automatic and accurate registration when tissue or
organ deformation is present (see Table V). Two models
consider deformation resulting from renal clamping and
incision [56], [90]. Kidney tissue is assumed to behave as
linear elastic homogenous isotropic or anisotropic tissue. The
models are evaluated on porcine kidneys by using fiducials
to calculate the differences between fiducial displacement
predicted by the model and the actual displacement derived
from CT images. The average TRE is 3.3 mm in the isotropic
and 3.0 mm in the anisotropic case [56].

Tissue deformation occurring due to external pressure load,
e.g. resulting from insufflation during laparoscopic interven-
tions, is addressed by Figueroa-Garcia et al. [91]. Their
model is used to preoperatively estimate the organ shape and
tumor position for RAPN or LPN procedures. An FEM with
linear elastic corotational kinematic description is applied to
a 3D volumetric mesh (generated from semi-automatically
segmented kidney parenchyma and tumor) to model the de-
formation. Evaluation with the same fiducial-based approach
as in [56], [90] yields an improvement of 29% of the registra-
tion error using the deformation model over the solely rigid
transformation. Assessment of the ex vivo kidney deformation
occurring under external pressure load results in an average
change of 2.17 mm of the relative distance from the tumor
centroid to the kidney surface.

Another FEM model for simulation of deformation is pro-
posed by Nishiyama et al. [92]. In contrast to [91], a non-
linear model is presented. Hyper-elastic material properties are
incorporated into the FEM stiffness matrix by decomposition
of the stress-strain relation into several functions of strain.
A comparison of the proposed method with a commercially
available non-linear FEM solver yielded a similar calculated
deformation for a uniaxial tensile test. Besides, the simulation
of the deformation was significantly faster with the new
method.

A method developed by Hostettler et al. [93] relies on
tracking the patient skin surface in real-time and modeling
diaphragm motion and its influence on the kidney movement
and deformation. Two preoperative CT scans in inspired and
expired position, respectively, are used to incorporate the
individual patient anatomy for extraction of the organ meshes
and modeling the diaphragm motion during breathing. The
model is evaluated by acquiring a third CT scan in expiration
position for comparison of the real positions with the simulated
positions of the internal organs. In this evaluation case, the
skin is extracted from CT data. From both the predicted and
the actual organ positions, the extracted meshes were used to
calculate the average distance between the gravity center of
each triangle position in the simulated and the surface mesh.
Computed errors for the kidney models were lower than 2 mm.

D. Aspects of Clinical Evaluation

To review the actual state of VR/AR systems in clinical
practice, this section presents studies in clinical settings with
respect to the integration into the clinical workflow and their
influence on patient outcomes (see Table VI).

In general, VR/AR assistance is described as helpful [38],
[40], [49], [52], [57], [59]. Concerning PN interventions with
complex vascular structures, such systems can improve the
identification of vessels by providing preoperative planning
support (VR) or intraoparative guidance (AR) [39], [41], [52],
[58], [59], [95]. With respect to PCNL procedures, AR systems
are primarily used for trajectory guidance and are considered
as helpful for assistance in reaching the target while avoiding
risk structures [45], [48], [49].

In most of the studies, the described systems are evaluated
qualitatively with respect to patient outcome. Only one re-
search group performs a retrospective quantitative evaluation
of patient outcome and procedure parameters for LPN with
and without AR assistance [41]. Outcomes of LPN procedures
performed in 22 patients with assistance of a 3D model for
preoperative planning and intraoperative manual image fusion
are compared to those of 14 LPN procedures without VR/AR
assistance. Statistical evaluation reveals a significantly reduced
mean operation time (159.0 vs. 193.2 min) and mean estimated
blood loss (148.1 vs. 176.1 ml). No significant differences
are found for mean segmental renal artery clamping time,
postoperative hospital stay duration and several renal function
parameters.

Another study where performance is evaluated quantita-
tively deals with the intraoperative use of “panoramic views”
[94]. It can be shown that novices being supported by
panoramic views from the very beginning of performing LRN
procedures perform significantly better with respect to blood
loss and operation time than the novices without assistance.

To enable an enhanced outcome for the patient using
VR/AR systems, it is important to consider the clinical user’s
perspective. With respect to the intraoperative workflow, no
modification occurs in the case of purely preoperative VR
assistance for precise planning [52]. Besides support in pre-
operative planning, VR models are displayed intraoperatively
to enhance the surgeon’s 3D orientation and visualize im-
portant risk or target structures [38], [39], [49], [58], [59].
Manipulation of the 3D model allows the surgeon to adapt
the model’s orientation to the actual operative view, thus
supporting guidance, but also increases the amount of human-
computer interaction. The standard clinical workflow is altered
most in cases where images are intraoperatively fused in a
manual way. In two of the reported cases, an additional surgi-
cal technician or surgical assistant performs the image fusion,
so that the surgeon is not exposed to additional burden and
the surgical process is not slowed down [33], [41]. A median
manual fusion time of six minutes is reported in [33]. In the
clinical application of two systems, the surgeon is actively in-
volved in the augmentation procedure. For an accurate surface-
based registration, the kidney surface is manually screened
with a tracked robotic instrument in [56]. No information
about the time required for the registration process is reported.
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TABLE V
REGISTRATION TECHNIQUES FOR VR/AR SYSTEMS USING APPROACHES BASED ON DEFORMATION MODELS ADDRESSING RADICAL NEPHRECTOMY

(RN) AND PARTIAL NEPHRECTOMY (PN), I.E. LAPAROSCOPIC PARTIAL NEPHRECTOMY (LPN) AND OPEN PARTIAL NEPHRECTOMY (OPN). IF NOT
STATED OTHERWISE, CT REFERS TO PREOPERATIVE CT.

Procedure Modalities Objective Method Evaluation

Ong et al. 2008
[90]

LPN Tracking data,
CT

Introduction of a kidney de-
formation model; calculation of
non-rigid deformation

Biot’s consolidation model Ex vivo: 2 porcine
kidneys

Altamar et al.
2011 [56]

RAPN Tracking data,
CT

Incorporation of a kidney defor-
mation model into navigation
system

Isotropic and anisotropic linear
elastic mathematical model

Ex vivo: 6 porcine
kidneys

Figueroa-Garcia
et al. 2014 [91]

RAPN
LPN

CT, CT Introduction of a kidney defor-
mation model

Finte element mesh with linear
elastic corotational kinematic de-
scription

Laboratory study: 5
ex vivo lamb kidneys
with fiducials

Nishiyama et al.
2015 [92]

PN not specified Introduction of a non-linear
FEM deformation model

Hyper-elastic material properties
incorporated in FEM stiffness ma-
trix

Labaratory study:
kidney model

Hostetter et al.
2010 [93]

Tracking data,
CT

Introduction of a kidney defor-
mation model to handle free
breathing

Real time tracking of patient skin
and modeling of diaphragmatic
boundary

Retrospective study:
CT data from 2 pa-
tients

In [55], both the 3D model reconstruction and the fusion
with the endoscopic video are performed intraoperatively. The
maximum time for model creation and fusion is stated as seven
minutes with a total surgery duration of 235 minutes for this
case. However, the accuracy of the fused image is limited.

E. Aspect of Human Factors

Studies addressing the user perspective were identified in
the literature search. A very important aspect to be considered
is the effect of AR on the ability of the surgeon to perceive
important structures. One study addresses this aspect by inves-
tigating the impact of cognitive load and AR image guidance
on inattention blindness during the surgery [96]. Segments of
videos from RAPN procedures are presented to three different
groups of surgeons, who subsequently answer a questionnaire
to assess unprompted and prompted attention. During the video
presentation, either a wireframe AR overlay, a solid overlay,
or no overlay at all is presented to each of the three respective
groups. These groups are further subdivided by subjecting
one half of them to additional cognitive load, resulting in
six groups in total. The results show a significant impact of
cognitive load on inattention for objects outside the image
focus, but no significant effect of AR overlay. Generally, a
relatively high level of inattention for items outside the focus
is recognized. Another study assesses the actual use of pre-
and intraoperative image modalities in robotic urological in-
terventions (RAPN, robot-assisted laparoscopic prostatectomy
and/or robotic cystectomy) with a questionnaire answered by
117 independently practicing robotic surgeons [97]. In total,
87% of the questioned surgeons envisaged a role for AR with
the highest amount of agreement among surgeons performing
RAPN. From these surgeons, asked in which parts of the
operation they would see AR as an assistance, the highest
amount of consent (74 %) was found for identification of
tumor location. Concerning intraoperative imaging, a majority
of surgeons performing RAPN use IOUS, thus, indicating that
this image modality could be used for AR in a realistic clinical
setting.

With regard to the user impact on AR outcome, Hughes-
Hallett et al. [98] evaluate the effect of manual segmentation
on the segmentation result of renal tumors. A ground truth
for comparison is calculated by applying the STAPLE (si-
multaneous truth and performance level estimation) algorithm
[99]. The results show significant differences in segmentation
between different raters and also between groups of raters
with different levels of clinical and segmentation experience.
Participants with pathology-specific imaging experience were
found to segment the tumor in a more radical way without an
increase in the amount of tumor left unsegmented.

IV. DISCUSSION

Renal interventions pose several challenges, such as safe
tumor resection during LPN or avoiding risk structures during
PCNL. For support in these interventions, different computer-
assisted systems have been developed to improve patient
outcome. Except two systems [39], [83], all identified systems
deal with minimally invasive interventions. These findings
emphasize the important role of assistance systems in mini-
mally invasive interventions, such as LPN. LPN has gained
increasing interest due to a decreased operative blood loss
and shorter hospital stay, but is at the same time related to
difficulties resulting from a reduced haptic feedback and a
limited field of view [13], [14], [54], [100]. VR/AR systems
address these limitations by providing additional information
pre- and intraoperatively. More than half of the identified
systems for PN (11/ 21) deal with robotic-assisted procedures,
thus, demonstrating the importance of this topic. Furthermore,
although the search strategy included computer assistance
for RCC resection and renal stone treatments, most of the
described systems deal with PN procedures. Different aspects
might explain this finding. For renal stone treatment, mini-
mally invasive procedures have already been well established
as a clinical standard. The initial puncture of the renal calyx
is the only step with potential benefit of AR support. LPN and
RAPN on the other hand are complex surgical interventions,
where VR/AR systems can support different phases of the
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TABLE VI
VR/AR SYSTEMS THAT ARE EVALUATED IN A CLINICAL SETTING.

Procedure Approach Number of
Patients

Results

Ukimura et al. 2008
[35]

LPN Augmentation of endoscopic view by vir-
tual tumor margins

1 Accuracy in superimposition sufficient for
precise 3D orientation

Teber et al. 2009 [54] LPN Augmentation of endoscopic video by 3D
model from preoperative CT

10 Accuracy in superimposition sufficient for
precise 3D orientation, AR guidance espe-
cially helpful in cases with vessels hidden in
parenchymal fat

Chen et al. 2014 [33] LPN Augmentation of endoscopic view by 3D
model from preoperative CT

15 Successful reconstruction of 3D models, me-
dian time to obtain fused images 6 min

Wang et al. 2015 [41] LPN Intraoperative manual fusion of 3D model
with endoscopic video

35 Significantly reduced operation time and es-
timated blood loss when using AR system

Isotani et al. 2015
[42]

LPN Preoperative simulation of PN and intraop-
erative display of 3D model below endo-
scopic video

20 Quantitative predictors from simulations in
accordance with post-operative outcomes

Komai et al. 2014
[39]

LPN,
OPN

3D model for planning and intraoperative
guidance

22 (LPN), 4
(OPN)

Model consistent with intraoperative findings
in all cases, supports “clampless” PN

Glisson et al. 2011
[83]

OPN Use of virtual “fiducials” for point-based
intraoperative re-registration

3 Point-based registration by using dots spread
on kidney surface can be used for deformation
tracking

Makiyama et al. 2015
[52]

LPN,
LRN

Simulator based on individual patient CT
data for “rehearsal” surgeries

13 Simulator especially useful in two cases with
complex anatomical relations; high content
validity score

Nakamura et al. 2010
[55]

LPN,
LRN

Augmentation of endoscopic video by in-
traoperatively reconstructed 3D model

2 (LPN), 3
(LRN)

Relatively fast and easy reconstruction of
model and fusion with endoscopic video, no
high accuracy

Naya et al. 2009 [94] LRN Display of panoramic views obtained from
endoscopic video during surgery

40 Surgeries conducted by novices using
panoramic views related to significantly
shorter operating time and blood loss

Ukimura et al. 2012
[40]

LPN,
RAPN

3D model for planning and intraoperative
guidance

4 3D model helpful for identification of vessels
for “Zero ischemia” PN

Altamar et al. 2011
[56]

RAPN Registration of endoscopic video with pre-
operative CT

Not stated Accuracy considered as “qualitatively good”

Furukawa et al. 2014
[38]

RAPN 3D model displayed below endoscopic
video on robotic console

17 System considered as helpful to obtain de-
tailed spatial information and to identify tar-
geted arterial branches

Hughes-Hallett et al.
2014 [59]

RAPN 3D model for planning and display below
endoscopic video on robotic console

5 System considered as helpful, especially in
case with complex renal vascular anatomy

Pratt et al. 2015 [57] RAPN Augmentation of endoscopic video with
laparoscopic IOUS image

1 AR overlay considered by surgeon as effica-
cious

Lasser et al. 2012 [58] RAPN 3D model for planning and display below
endoscopic video on robotic console

10 Precise planning and 3D model display con-
sidered as especially helpful for complex vas-
cular anatomy

Rassweiler et al. 2012
[48]

PCNL Augmentation of tablet camera view by 3D
planning model from preoperative CT

2 Demonstration of clinical feasibility of sys-
tem, used for determination of puncture site

Li et al. 2013 [49] PCNL 3D model for detailed preoperative plan-
ning and intraoperative guidance

15 Model considered by surgeon as helpful

Mozer et al. 2007 [45] PCNL Augmentation of IOUS image by preoper-
ative CT images for navigation

1 Needle tract on fluoroscopy image corre-
sponds to the one targeted by surgeon

procedure. Independent of the surgery itself, current urological
research shows a clear trend towards the oncological fields,
thus further explaining the comparatively high amount of
literature dealing with RCC treatment.

Concerning the clinical evaluation of the presented systems,
only 44% (20/ 45) of the identified approaches have already
been applied in clinical practice. Nine were evaluated on ten
or more patients, with the highest amounts of patients for
evaluation being 35 [41] and 40 [94]. Compared to other
clinical trials, this amount is quite low [8], [101] and limits
the option to provide evidence of improved outcomes by the
use of VR/AR systems. Only one study statistically evaluating
the impact of AR systems on different surgical parameters
indicates that AR support yields indeed an improved out-
come [41]. However, the system is used intraoperatively for

augmentation as well as preoperatively for precise planning
including virtual resections, so that the additional value of
AR over VR remains unclear. To support a transformation of
VR/AR approaches from research into clinical practice, more
quantitative evaluation of outcome - also with respect to costs
related to the use of the system - will be necessary. Because of
high regulatory hurdles and hence financial challenges for the
evaluation and implementation of new technologies in clinical
settings, also the role of cooperations with manufactures is
gaining of importance [102].

Several difficulties are related to VR/AR support: The
generation of 3D models used for simulation purposes can
be very time-consuming [51]. Once the 3D model is created,
an AR overlay needs to take organ motion into account.
Methods to deal with this, such as manual image registration,
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require additional resources and can alter the intraoperative
workflow [33], [41], [55]. This aspect might explain why
the implementation of AR systems in urology is proceeding
more slowly than in other fields, e.g., in neurosurgery, where
computer-assisted navigation systems are used in clinical
routine and bone structures can be used for rigid registration
[103], [104]. Furthermore, most of the approaches to incor-
porate deformation address only one source of motion [91],
[93], [105], so that models incorporating several reasons for
deformation would be needed. Another problem influencing
the ability to represent the patient’s anatomy correctly for
VR/AR support is intra- and inter-user variability for manual
segmentation [98], which is applied in several cases [58],
[59]. The effect of segmentation variability on augmentation of
tumor margins for PN procedures could possibly be addressed
by the approach of Amir-Khalili et al. [32], allowing for
automatic segmentation and encoding of probabilities of the
segmentation result. Manual segmentation is also often used as
ground truth for evaluation of (semi-)automatic segmentation
or registration approaches, thus limiting the validity of the
results [69], [79].

With respect to user interaction, surgeons generally seem
to handle manipulation of 3D models relatively easily [55].
Nevertheless, some methods were demonstrated to be more
intuitive than others, such as the manipulation with a tablet
computer rather than a 3D mouse [59]. This aspect is also
related to the user’s (surgeon’s) individual experiences and
thus emphasizes the need to consider the intuitiveness of
interaction when designing VR/AR systems.

Another aspect which is important for the effectiveness
of AR support in clinical practice is inattention blindness
resulting from the AR overlay. Whereas Hughes-Hallett et al.
[96] did not find a significant increase in it when presenting an
AR overlay for RAPN procedures, Dixon et al. [106] demon-
strated the opposite in the field of otolaryngology. Although
the studies differ in their design (in [106] an endoscopic
task is performed on a cadaveric specimen, whereas RAPN
videos are presented to the participants in [96]), the findings
demonstrate that the influence of AR on inattention blindness
is not unambiguous and further investigations – also under
clinical conditions – are required. The problem of AR overlay
distracting the view on the operation field is also reported
in [32], where different possible AR views are compared
and the ones presenting several contours are considered as
obstructing the kidney. Hence, not only the influence of the AR
overlay itself, but also of its realization needs to be considered.
Furthermore, the cognitive load which could be related to the
use of the AR system should be minimized [96].

Also important regarding different VR/AR systems is the
extent to which the clinical workflow is altered by the use of
the assistance systems. As presented, the amount of change
in the intraoperative process varies depending on the human
factors which are involved. Moreover, for results from eval-
uations of AR approaches, such as those suggesting not to
move the surgical instrument during video acquisition [36], the
impact of this instruction should be carefully weighed against
the added value from the system. Besides the effect on the
intraoperative procedure, the additional effort on preoperative

planning also needs to be taken into account. The time required
for obtaining 3D planning models has a range from a few
minutes [43] to several hours [51]. One option to reduce the
planning effort, which is already applied in clinical routine,
consists in outsourcing the reconstruction of the 3D model
from imaging data [58].

This review focused, for the treatment of RCC, on sur-
gical (minimally invasive) resection. It should be noted that
even less-invasive treatment options exist. They include high
intensity focused ultrasound (HIFU), RFA, and cryoablation.
Whereas RN or PN are recommended as standard treatment
options for RCC, ablation techniques are considered as op-
tional alternatives for older patients or patients with substantial
comorbidities. HIFU is currently seen as an experimental
approach [5], [107]. As the majority of renal tumors are treated
by resection of the tumor and hence most of the VR/AR
systems are designed for assistance in those intervention, this
review covers these systems. After more clinical experience
with ablation techniques, a future review could also include
systems for those interventions.

With regard to the technical evaluation of the presented
approaches, a comparison between different methods is
difficult due to various metrics that were selected for
quantitative assessment. Whereas for the registration
techniques evaluation was in several cases based on the
TRE, different metrics such as the dice similarity coefficient
or sensitivity and specificity were presented in case of
segmentation methods [56], [65], [66], [67], [72], [76].
Fully developed systems were mainly evaluated in a solely
qualitative manner (see Tab. I and II).

To conclude the discussion, following challenges should
be addressed in the future:

• Reduction of additional workload for the use of the
assistance systems, e.g., by taking human factor issues
and advanced methods for human-computer interaction
into account.

• Clinical studies with an increased number of participants
to demonstrate (quantitative) evidence for an improved
outcome resulting from VR/AR systems. Also, cost-
effectiveness needs to be evaluated.

• Incorporation of organ movement and deformation by
real-time tracking and/or deformation models taking more
than one source of motion into account.

• Intraoperative visualization of uncertainty, in particular
regarding errors in segmentation, registration, and track-
ing.

As mentioned above, more than half of the AR systems were
applied in RAPN procedures. Whereas most of them could
also be applied in non-robotic-assisted endoscopic procedures,
some of them rely on the position information obtained from
the robotic arm. While different types of imaging systems are
widely available as standard equipment in hospitals, robotic
systems are encountered less frequently. In order to enable
the broad use of AR systems, it will therefore be important
to also develop assistance systems that can be readily used in
simple endoscopic setups.
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V. CONCLUSION

This literature review shows the extent to which VR/AR
support is already used in clinical practice. Furthermore, there
is a desire for an increased use of AR systems in urology [97].
VR/AR has the potential to improve the safety and outcome of
renal interventions in the future. Although results from large
clinical studies are not yet reported in the literature, many
advances in the last ten years have led to sophisticated systems.
Further interdisciplinary research is required to cope with cur-
rent limitations of VR/AR assistance in clinical environments.
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