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ABSTRACT

Segmentation of hepatic arteries in multi-phase computed tomography (CT) images is indispensable in liver
surgery planning. During image acquisition, the hepatic artery is enhanced by the injection of contrast agent.
The enhanced signals are often not stably acquired due to non-optimal contrast timing. Other vascular structure,
such as hepatic vein or portal vein, can be enhanced as well in the arterial phase, which can adversely affect the
segmentation results. Furthermore, the arteries might suffer from partial volume effects due to their small diam-
eter. To overcome these difficulties, we propose a framework for robust hepatic artery segmentation requiring a
minimal amount of user interaction. First, an efficient multi-scale Hessian-based vesselness filter is applied on the
artery phase CT image, aiming to enhance vessel structures with specified diameter range. Second, the vesselness
response is processed using a Bayesian classifier to identify the most probable vessel structures. Considering the
vesselness filter normally performs not ideally on the vessel bifurcations or the segments corrupted by noise,
two vessel-reconnection techniques are proposed. The first technique uses a directional morphological operator
to dilate vessel segments along their centerline directions, attempting to fill the gap between broken vascular
segments. The second technique analyzes the connectivity of vessel segments and reconnects disconnected seg-
ments and branches. Finally, a 3D vessel tree is reconstructed. The algorithm has been evaluated using 18 CT
images of the liver. To quantitatively measure the similarities between segmented and reference vessel trees, the
skeleton coverage and mean symmetric distance are calculated to quantify the agreement between reference and
segmented vessel skeletons, resulting in an average of 0.55± 0.27 and 12.7± 7.9 mm (mean standard deviation),
respectively.
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1. INTRODUCTION

According to the data from the GLOBOCAN project, liver cancer is the sixth most common cancer worldwide
in 20121 and is ranked the second most common cause of cancer deaths. To ensure the sufficient function and
survival of the remaining liver tissue after therapy, the supply and drainage of blood as well as the connection to
the bile ducts has to be secured. Detailed models of hepatic vein (HV), portal vein (PV), and hepatic artery (HA)
are necessary to integrate these conditions into the planning process. Segmentation of these vascular structures
is the prerequisite for model construction and computer-assisted surgery planning.

Even though a substantial amount of researches have been conducted on the analysis of vascular structures,
it is still considered as an open problem (see 2–4). Hessian-based filters are the major methods used in these
efforts so as to enhance tube-like structures but suppress others. Specifically, enhancing tube-like structures is
normally based on the analysis of eigenvalues and eigenvectors of the Hessian matrix. A variety of tubular filters
have been defined using the ratio of eigenvalues to distinguish tubes from planes and blobs5–7 . Manniesing8

employed the eigenvalues to define the diffusion tensor of anisotropic filters to enhance vascular structures.
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Addition to eigenvalues, the eigenvectors were also used to develop medialness functions to extract the vascular
centerlines.9,10 To handle vessels of different radii, a multi-scale framework is usually incorporated in the Hessian-
based analysis. The other methods such as the model-based approaches and the level-set techniques were also
explored. A directional filter bank was presented by Truc et al. to enhance tubular structures and used 2D
images for evaluation.11 Qian et al. defined an enhancement filter based on the probability density function
in a polar coordinate.12 Agam et al. proposed an enhancement filter using the eigenvalues of the correlation
matrix of gradient vectors,13 while Aylward et al. traced the intensity ridges as the medial axis of tubes.14

A statistical framework, attempting to estimate a solution vector including the next point on the medial axis,
the tangent vector to the next point, and the scale of the tube, was reported by Wong et al.15 Gulsun et al.
proposed a medialness function to look for the medial axis through the minimum-path-cost algorithm.16 Wörz
et al. improved a vascular model for small and large vessels and employed an optimization algorithm to fit the
model, find the medial axis, and estimate the radius.17 Gooya devised a new formulation of level-sets to evolve
the front in the longitudinal direction of a tube.18 In 4, a new filter that enhances medial axis of tubes with a
symmetric cross-section was proposed. However, very few works focus on the segmentation of hepatic artery.

In this work, we focus on the segmentation on the hepatic artery. The task is challenging due to the small
diameter close to the resolution limit, which might suffer a lot from partial volume effect. Imperfect pre-processing
steps, such as the vesselness filter, normally generate incomplete initial segmentation of the target vasculature.
Hence, the techniques dedicated to fix the vessel tree are demanding. We proposed two vessel-reconnection
schemes, attempting to fill the gapped vessel segments and join the missing bifurcations. The entire framework
can be easily adapted to segment HV, PV and bile ducts.

2. METHODS

First, a vesselness filter on three scales is performed on the input CT volume. The multi-scale vesselness response
is then further processed using a statistical Bayesian model to identify the most probable vessel structures.
Additionally, a directional morphological operator that considers the vessel orientation is performed. After the
entry root of the hepatic artery is placed interactively, the connection cost and path to the root are computed for
each contiguous artery segment. Finally, the segments are reconnected to one vessel tree. A schematic overview
of the entire workflow is illustrated in Fig. 1.

First, a vesselness filter on three scales is performed on the input CT volume. The multi-scale vesselness re-
sponse is then further processed using a statistical Bayesian model to identify the most probable vessel structures.
Additionally, a directional morphological operator that considers the vessel orientation is performed. After the
entry root of the hepatic artery is placed interactively, the connection cost and path to the root are computed for
each contiguous artery segment. Finally, the segments are reconnected to one vessel tree. A schematic overview
of the entire workflow is illustrated in Fig. 1.

Figure 1. Schematic overview of the entire segmentation workflow.

2.1 Multi-scale vessel enhancement filter

Hessian-based filters have been widely employed to enhance tube-like structures of 3D images. Because the
contrast level of HA in different input images is quite heterogeneous, we choose the multi-scale, Hessian-based



vesselness filter introduced by Frangi et al. to enhance artery within the liver mask.6 Assuming the eigenvalues
of Hessian matrix are sorted in order: |λ1| ≤ |λ2| ≤ |λ3|, the Frangi vesselness filter is defined as following:
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The ratio RA is designed to differentiate vessels from sheet-like structures, whereas RB is used to distinguish
vessels from blob-like structures. The term S aims to suppress noise structures. The scale parameter σ indicates
the size of Gaussian kernel used for calculating Hessian matrix. The parameters used in this filter, α, β and c
are set to 0.5, 0.5 and 10. Considering the radius range of HA, we choose three optimized scales for σ: 1 mm,
1.2 mm, and 1.4 mm based on our experimental tests, which are able to capture vessels with thin, medium, and
thick radii. The ultimate vesselness response is obtained by extracting the maximum across all scales.

2.2 Bayesian vessel classifier

The vesselness outputs of three scales are individually assessed with a Bayesian vessel classifier that uses a
Gaussian mixture model (GMM), assuming that the image is a mixture of a finite number of Gaussian distribu-
tions with unknown parameters. The Bayesian vessel classifier is supposed to differentiate the vasculature from
non-vasculature based on the vesselness response. Therefore, the number of Gaussian distributions in the GMM
is assumed as two. The expectation maximization (EM) algorithm is exploited to estimate the mean and the
variance of each Gaussian distribution. Since the EM algorithm requires initializing all parameters, mean, vari-
ance and probability for both classes have to be estimated. The Frangi’s vesselness measurement is comparable
across scales and images, which makes it possible to determine a set of initial parameters. To further simplify
the process, a minimal vesselness threshold was used to discard background voxels with close to zero vesselness
response. Using the parameters calculated by the EM algorithm, the probability distribution of vasculature and
non-vasculature classes are achieved. Thus, a voxel belonging to a class c based on it’s vesselness value x can be
obtained using Bayesian formula: .

p(c|x) = (p(x|c)× p(c))/p(x) (2)

Each voxel is then assigned to the class with higher probability. This classification is conducted for all three
vesselness outputs. A voxel is marked as vessel in a binary output image (as shown in Fig. 2 (b)), if it is classified
as vessel in one of the three scales.

2.3 Directional morphological dilation

The binary output of the Bayesian vessel classifier depicts the most probable vessel segments with gaps and
holes. To close small gaps in between and also fill holes, a directional morphological dilation along the vessel
orientation is applied.

Although dilation is a common used morphological operator to fill the gap in binary images, it often merges
irrelevant neighboring structures. To overcome this problem, the orientation of a vessel segment, which is derived
from the eigenvector of the hessian matrix that correlates to the smallest eigenvalue, is incorporated in the dilation
process. The structure element is defined as a line with a fixed length along the local vessel orientation (see Fig.
2(a)). The directional dilation performs only on the background voxels near to the detected vessel segments. The
voxel values of the line element are interpolated. The percentage of foreground voxels is computed and compared
to a percentage threshold. If the percentage exceeds the threshold, the currently processed background voxel is
labeled as foreground in the output image. To achieve a higher level of connectivity, this dilation procedure is
performed twice. The second round utilizes the result of the first round as the input. Compared with the vessel
segments identified by Bayesian classifier (see Fig. 2(b)), the dilated vessel segments as depicted in Fig. 2(c)
tend to be more connected with fewer gaps.



Figure 2. (a) directional dilation kernel (red line) applied in a background voxel (blue); (b) vessel segments resulted from
Bayesian classifier; (c) vessel segments resulted from directional dilation; (d) the reconstructed HA vessel tree (green)
obtained by connecting and merging vessel segments.

2.4 Vessel connectivity analysis

To some extent, the directional dilation shows its ability to bridge the gaps between vessel segments, but still
does not work well enough to build a complete HA vessel tree. Particularly, the bifurcations connecting different
level of branches can be missing, due to the inherent weakness of the vesselness filter, which normally performs
imperfectly in joint regions. To build a complete vessel tree, a root is required to be identified, and the con-
nectivity of all vessel segments to their parent branches, and ultimately to the root needs to be analyzed. We
analyze the vessel connectivity by computing the cost of the path connecting a vessel segment to the root, which
consists of several steps.

2.4.1 Skeleton components extraction

First, a connected component analysis is performed on the skeletons of the dilated vessel segments. The skeleton,
representing the centerline voxels of a vessel segment, is extracted by a thinning operation. A component is
defined as a group of skeleton voxels and has a unique index. The size of a component is the number of
its skeleton voxels. The radius and the 3D position of each skeleton voxel are saved. All vessel segments are
traversed, and their corresponding components are constructed. Not all components will be fed to the subsequent
steps, and a valid component should fulfill two conditions:

• its size should be larger than a minimum threshold

• it should not form a ring structure.



Figure 3. (a) Mapping function to compute the cost image; (b) illustration of optimal path from components to the root
and the connection cost (arrow length is proportional to the cost strength) b etween primary component (such as Comp
1) to its follower (Comp 2). Comp 4 will not be reconnected to the root due to the cost exceeding the threshold; (c) 3D
visualization of reference HA volume (red) and segmented HA skeleton (green).

2.4.2 Connection cost computation

The HA vessel system is assumed to be a tree structure with a root node that can be selected as any point on
the main HA branch, before it further splits to small branches in the liver. Considering the HA anatomy, the
root may be defined either inside or outside the liver. To ensure the accuracy of the root position, it was decided
to place the root by the user interactively. To calculate the connection cost from a skeleton component to the
root, a cost image has to be built. We generate a cost image by applying a transfer function on the intensities of
the original CT image as depicted in Fig. 3(a). First, the mean (m) and standard deviation (s) of the intensities
are calculated. The function maps all the intensities smaller than m− s to 1 and all the ones larger than m+ s
to 0. The intensities in between will be mapped linearly to the range of (0, 1). Additionally, the cost value of all
skeleton voxels in each component is set to 0. Then, the Dijkstra algorithm is applied on the cost image, and the
optimal path with the minimal cost from any voxel to the root can be found. Because the cost traveling from
one skeleton voxel to another within a component is 0, the voxels belonging to the same component will result
in the same optimal path. This path is then defined as the optimal path for the component to reach the root,
and the corresponding connection cost is the sum of the cost values along the path.

2.4.3 Vessel component connecting

After the optimal paths to the root for all the components have been found, the component connecting process
is triggered. First of all, two additional attributes are assigned to each component: the follower and the cost to
the follower. For a primary component, its optimal path is traced towards the root. If another component is
found on the path, the tracing process stops. The found component is assigned as the follower for the primary
one, and the cost between them is the subtraction of their costs to the root. Certainly, it is possible that no
other component is found on the optimal path till the root, and then the follower for the primary component
is set as the root and the cost to the follower is identical as the cost to the root. Afterwards, the costs to the
follower for all components are sorted in ascending order. The component connecting and merging process is
started with the one with the minimal cost and iterate through all the components based on the cost order. To
avoid unreliable connecting, the primary component and its follower will be connected and merged only if the
cost is under a threshold. For the components of which the followers are the root, the cost threshold is doubled,
because the root might be placed a little bit far from the liver arising higher cost. The entire process is illustrated
in Fig. 3(b). The gap between a primary component and its follower is filled with the skeleton voxels on the
optimal path. The radii of these skeleton voxels are interpolated with the radii of the primary and the follower
component voxels. Finally, all connected and merged components that can reach the root are selected to build
the complete HA vessel tree, which serves as the segmentation results as shown in Fig. 3(c).



Figure 4. Examples showing two cases with high (left column) and low (right column) SC values. (Top row) the 2D
view of ground truth (red) and segmentation (green); (Middle row) the vessel segments (red) and the reconnected vessel
branches (green); (Bottom row) the 3D visualization of ground truth (red) and segmentation (green).



3. RESULTS

3.1 Data sets

We collected 18 hepatic multi-phase CT datasets with tumors for the evaluation of our approach. All data sets
have a voxel spacing of 0.7mm × 0.7mm × 0.8mm. For each dataset, the liver was imaged once in the venous
phase and once in the arterial phase. The liver mask and HA vessel were segmented manually by a medical
professional (MeVis Distant Service, Bremen, Germany), and the latter serves as the reference for evaluation.
The similarity of two vessel trees is difficult to express with a single measurement. Regarding the time efficiency,
processing one dataset overall took about 1 minute on average on a machine with a 6-Core 3.5 GHz CPU, in
which about 5 seconds were taken to place the root interactively.

3.2 Evaluation metrics

The error of misalignment can result from two sources: branching pattern and radius, which need to be addressed
with different measurements. To assess the quantitative segmentation quality, the following metrics were used:

• Skeleton coverage (SC): percentage of the segmented skeleton covered by the reference vessel volume

• Mean symmetrical distance (MSD): mean distance between the segmented and reference skeletons

If the branching pattern of the segmentation is accurate, its skeleton should be completely covered be the
reference volume, resulting in a higher SC value. MSD is even more sensitive to the error of branching patterns.
These metrics were computed inside the liver mask. The mean and standard deviation values of SC and MSD
were 0.55± 0.27 and 12.7± 7.9mm, respectively. Figure 4 demonstrates two example cases with relatively high
and low SC values. It can be observed that the algorithm is capable of capturing the majority of enhanced HA
vessels which are enhanced properly with a significant contrast with surroundings. On the other hand, in the
cases where the segmentation performs not well, normally HV and PV vasculatures are substantially enhanced as
well, due to imperfect imaging time during the acquisition. If the HA phase is taken imperfectly with enormous
enhancement of other vasculatures such as HV and PV, the algorithm can be misled and generate a substantial
amount of false positive segmentation. Additionally, as shown in Fig. 3(c), the manually annotated reference
often did not reach the small HA branches deep inside the liver. Some more examples visually depicting the
performance are given in Fig. 5.

Figure 5. Visual demonstration of the reference (red) and segmented (green) HA vessels.

4. CONCLUSIONS AND DISCUSSIONS

In this work, we developed a framework dedicated to hepatic artery segmentation in CT for liver surgery planning.
The proposed directional dilation morphological operator along the vessel centerline orientation is capable of
bridging the gap between the broken vessel segments to some extent. The subsequent Dijkstra-based vessel
connectivity algorithm has a great potential to reliably reconstruct the complete vessel tree, and thus to improve
the workflow of liver surgery planning. To guarantee the performance of the algorithm, the HA phase CT should
be taken with a satisfactory quality where no substantial amount of other vasculatures are enhanced.
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